Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(10): 2481-2486, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36867598

RESUMO

Capturing the hydrogen radical is of central importance in various systems ranging from catalysis to biology to astronomy, but it has been proven to be challenging experimentally because of its high reactivity and short lifetime. Here, neutral MO3H4 (M = Sc, Y, La) complexes were characterized by size-specific infrared-vacuum ultraviolet spectroscopy. All these products were determined to be the hydrogen radical adducts in the form of H•M(OH)3. The results indicate that the addition of the hydrogen radical to the M(OH)3 complex is both thermodynamically exothermic and kinetically facile in the gas phase. Moreover, the soft collisions in the cluster growth channel with the helium expansion were found to be demanded for the formation of H•M(OH)3. This work highlights the pivotal roles played by the soft collisions in the formation of hydrogen radical adducts and also opens new avenues toward the design and chemical control of compounds.

2.
Chemphyschem ; 23(9): e202200060, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35294798

RESUMO

A neutral boron carbonyl complex B4 (CO)3 is generated in the gas phase and is characterized by infrared plus vacuum ultraviolet (IR+VUV) two-color ionization spectroscopy and quantum chemical calculations. The complex is identified to have a planar C2v structure with three CO ligands terminally coordinated to a rhombus B4 core. It has a closed-shell singlet ground state that correlates to an excited state of B4 . Bonding analyses on B4 (CO)3 as well as the previously reported B4 and B4 (CO)2 indicate that the electronic structure of rhombus tetraboron cluster changes from a close-shell singlet to an open-shell singlet in B4 (CO)2 and to a close-shell singlet in B4 (CO)3 , demonstrating that the electronic structures of boron clusters can be effectively tuned via sequential CO ligand coordination.

3.
Environ Res ; 209: 112889, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35131321

RESUMO

Photocatalysis can be an effective technique for eliminating organic contaminants from water. In this study, BiOBr flower-spheres coupled with porous graphite carbon nitride (g-C3N4) were synthesized by controlling the dosage of cetyltrimethylammonium bromide (CTAB). Various characterization techniques were then applied to elucidate the structure-performance relationships of the resulting heterojunction photocatalysts in degrading organic dyes. Experimental results established an optimal molar ratio for KBr to CTAB of 5:1. Benefiting from a remarkable porous structure and tight coupling between porous g-C3N4 and BiOBr, the optimal BiOBr-g-C3N4(2%) exhibited enhanced visible light absorption capability and promoted the separation of photoinduced carriers. Total removal efficiency for rhodamine B (RhB, 25.0 mL, 20.0 mg L-1) reached 87% within 30 min in the presence of BiOBr-g-C3N4(2%) (20.0 mg) (i.e., 1.51 µmol (gphotocatalyst min)-1), which is superior to the performance of BiOBr (72%) (i.e., 1.25 µmol (gphotocatalyst min)-1), g-C3N4 (21%) (i.e., 0.37 µmol (gphotocatalyst min)-1). Furthermore, the photocatalytic reaction rate constant over the optimal heterojunction was 0.034 min-1, which is significantly larger than those of porous g-C3N4 (0.003 min-1) and BiOBr (0.015 min-1). Moreover, this type II heterojunction showed good universality for other organic dyes (such as methyl violet, methylene blue, and crystal violet), highlighting a promising potential role in the elimination of environmental pollutants.


Assuntos
Poluentes Ambientais , Bismuto/química , Catálise , Porosidade
4.
J Colloid Interface Sci ; 604: 508-516, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34274714

RESUMO

Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the two branches of artificial overall water splitting (OWS), in which the reaction efficiency usually depends on different specific catalysts. Although effective bifunctional electrocatalyst for OWS (HER and OER) are highly desired, designing and constructing such suitable materials is full of challenges to overcome several difficulties, involving slow kinetics, differences in catalytic mechanisms, large overpotential values, and low round-trip efficiencies. In this work, we reported a new bifunctional electrocatalyst Ru/RuO2-MoO2 catalyst (RRMC) via a redox solid phase reaction (RSPR) strategy to achieve the high electrocatalytic activity of OWS. Briefly, due to the restricted transport behavior of atoms in solid state precursor, the designed redox reaction occurred between the adjacent part of RuO2 and MoS2, forming Ru/RuO2 hybrid NPs and MoO2 plane. Therefore, the newly formed Ru/RuO2 hybrid NPs and MoO2 plane were tightly combined and used as an electrocatalyst for OWS. Benefiting from the exposed active sites and optimized electronic structure, the RRMC sample annealed at 500 °C (RRMC-500) exhibited low overpotential for HER (18 mV) and for OER (260 mV) at 10 mA cm-2 under alkaline conditions. Especially, a low cell voltage of 1.54 V was required at 10 mA cm-2 under alkaline condition.

5.
Environ Res ; 197: 111136, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33839114

RESUMO

Constructing S-scheme heterojunction photocatalysts reveals a greatly improved separation efficiency of photogenerated carriers and enhanced harvesting ability of solar energy in photocatalytic field. Herein, a ternary CdS-g-C3N4-GA heterojunction has been fabricated by a facile ultrasound strategy, which behaved as a S-scheme heterojunction with an intimate interface formed, and GA played as an electronic transportation platform to promote the separation of photo-induced charge carriers, which was certified through photoelectrochemical techniques. Density functional theory calculations revealed that the different component in ternary CdS-g-C3N4-GA heterojunction demonstrated an obvious difference of work function, resulting in the charge transfer from CdS to g-C3N4 through GA with S-scheme principle. In the optimized conditions, the S-scheme CdS-g-C3N4-GA heterojunction not only displayed greatly enhanced photocatalytic performances for degradation of dye and antibiotic wastewater, but also improved photocatalytic H2 production activity. In addition, the photocatalytic mechanism and driving force of charge transfer and separation in S-scheme CdS-g-C3N4-GA heterojunction were studied. This study offers a feasible strategy to construct a ternary S-scheme heterojunction for environmental and energy photocatalysis.


Assuntos
Grafite , Antibacterianos , Luz , Águas Residuárias
6.
3 Biotech ; 10(2): 42, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31988836

RESUMO

This study investigated the impacts of crude oil, diesel, and gasoline on the diversity of indigenous microbial communities as well as culturable microorganisms in the studied soil. Oil contamination led to shifts in the diversity of the soil's microbial communities, regardless of the contaminant applied. Unpolluted soils were more diverse and evenly distributed than contaminated samples. The domain Bacteria accounted for 65.15% of the whole microbial community. The bacterial phylum Proteobacteria dominated in all samples, followed by Actinobacteria and Acidobacteria. Pseudomonas with 28.15% of reads dominated in Proteobacteria, while Rhodococcus (3.07%) dominated in Actinobacteria, and Blastocatella (2.53%) dominated in Acidobacteria. The dominant fungal phyla across all samples were Ascomycota dominated by Penicillium (50.48% of sequences), and Zygomycota dominated by Mortierella (16.87%). Sequences similar to the archaeal phyla, Euryarchaeota and Thaumarchaeota, were also detected. The number of culturable microorganisms increased following the contamination and was higher in contaminated samples than in clean samples. Oil contamination also resulted in the enrichment of oil-degrading strains. Two bacteria, Serratia marcescens strain PL and Raoultella ornithinolytica PS, which were isolated from crude oil-contaminated soil, exhibited strong crude oil degradation ability. Strain PL was the most efficient strain and degraded 75.10% of crude oil, while strain PL degraded 65.48%, after 20 days of incubation. However, the mixed culture of the two strains was more effective than single strain and could achieve up to 96.83% of crude oil degradation, with a complete abatement of straight-chain hydrocarbons (from C12 to C25), and more than 91% removal of highly branched hydrocarbons, phytane and pristane, which are known to be more recalcitrant to biodegradation. Strains PS and PL are two newly isolated crude oil degraders that are not among the most prominent crude oil-degrading strains referenced in the literature. Therefore, their high degradation capacity makes them perfect candidates for the bioremediation of petroleum hydrocarbon contaminated environments.

7.
Chem Commun (Camb) ; 56(5): 818-821, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31848531

RESUMO

We designed an excellent-performance porous nitrogen-doped carbon material with a NiO/Cu/Cu2O hetero-interface derived from bimetal-organic frameworks. The hetero-interfaces between NiO/Cu/Cu2O could boost the Na+ diffusion and increase the electrical conductivity. The obtained composite achieves highly reversible Na-storage with excellent cycling stability and rate capability.

8.
Polymers (Basel) ; 9(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30970990

RESUMO

Exceptionally high electro-caloric effects (ECEs) are observed in nanocomposites consisting of poly(vinylidene fluoride-co-trifluoroethylene) (VDF⁻co⁻TrFE) copolymer and barium titanate (BT) nanoparticles and nanowires. The poly(VDF⁻co⁻TrFE) matrix nanocomposites containing 5% volume fraction of BT nanowires are found to exhibit a negative ECE temperature change as large as 12 °C or a refrigeration effect of 8.3 J/g, which is much larger than those reported to date. The mechanisms of negative ECE and the enhanced negative ECE in the nanocomposites consisting of poly(VDF⁻co⁻TrFE) and BT nanowires are explained by the Kauzmann theory on glassy polar states and the interaction between BT nanofillers and the copolymer matrix. The effects of geometries of BT nanofillers on the negative ECEs are elucidated by P-E loop measurements, and dielectric and dynamical mechanical analyses. The nanocomposites, with their enhanced negative ECE tuned by the geometries of BT nanofillers, provide us with promising ECE refrigerants for practical application to small-sized and environmentally-friendly ECE coolers in the heat management of electronic devices.

9.
Photochem Photobiol Sci ; 15(8): 1012-9, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27417708

RESUMO

A series of composites consisting of anatase TiO2 nanocrystals and three-dimensional (3D) graphene aerogel (TiO2-GA) were self-assembled directly from tetrabutyl titanate and graphene oxides via a one-pot hydrothermal process. TiO2 was found to uniformly distribute inside the 3D network of GA in the resulting composites with large surface areas (SBET > 125 m(2) g(-1)) and high pore volumes (Vp > 0.22 cm(3) g(-1)). In comparison with GA and TiO2, the composites possessed much higher adsorption capacities and visible light photocatalytic activity in the degradation of rhodamine B (RhB). With an initial concentration of 20.0 mg L(-1) of RhB, the adsorptive decolourization of RhB was as high as 95.1% and the total decolourization value reached up to 98.7% under visible light irradiation over 5.0 mg of the resulting composites. It was elucidated that the physical and chemical properties of the TiO2-GA composites could be ascribed to their unique 3D nanoporous structure with high surface areas and the synergetic activities of graphene nanosheets and TiO2 nanoparticles.

10.
Sci Rep ; 3: 2895, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24100662

RESUMO

BaTiO3 has a giant electrocaloric strength, |ΔT|/|ΔE|, because of a large latent heat and a sharp phase transition. The electrocaloric strength of a new single crystal, as giant as 0.48 K·cm/kV, is twice larger than the previous best result, but it remarkably decreased to 0.18 K·cm/kV after several times of thermal cycles accompanied by alternating electric fields, because the field-induced phase transition and domain switching resulted in numerous defects such as microcracks. The ceramics prepared from nano-sized powders showed a high electrocaloric strength of 0.14 K·cm/kV, comparable to the single crystals experienced electrocaloric cycles, because of its unique microstructure after proper sintering process. Moreover, its properties did not change under the combined effects of thermal cycles and alternating electric fields, i.e. it has both large electrocaloric effect and good reliability, which are desirable for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...