Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 981-991, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452547

RESUMO

To enhance the efficiency of photocatalytic H2 evolution, numerous methods are employed by increasing the utilization of photogenerated charge carriers (PCCs), including catalyst design, defect regulation, and selection of suitable H+ resources. Using self-assembly method, CoWO4/ZnxCd1-xS with p-n heterojunction was synthesized. Although CoWO4 (CW) cannot produce H2 under visible light irradiation, it can provide photogenerated electrons (e-) to Zn0.3Cd0.7S (ZCS), and largely increase the photocatalytic activity of ZCS. The optimal CW/ZCS composite can reach 15.58 mmol·g-1·h-1, which is 45.8 and 24.3 times higher than the values of the pure CdS and ZCS, respectively. The largely enhanced photocatalytic H2 production is attributed to the Zn vacancies (VZn), p-n heterojunction, and p-chlorobenzyl alcohol (Cl-PhCH2OH) as the H+ source of H2 production. VZn on the ZCS surface as the capture center of photogenerated holes (h+), can regulate the carrier distribution, which results in more photogenerated e- and less generated h+. The combination of p-n heterojunction and VZn can enhance the separation and transfer efficiency of PCCs, and effectively inhibit the recombination of charge carriers. To further improve the utilization rate of PCCs, the photocatalytic H2 evolution is proceeded by Cl-PhCH2OH oxidation in N,N-dimethylformamide solution, with 4-chlorobenzaldehyde (Cl-PhCHO) generated. The separated photogenerated e- and h+ both participated in the redox reaction of H+ reduction and Cl-PhCH2OH oxidation, considering that the amount of H2 and Cl-PhCHO products are close to 1:1. This work not only facilitates the separation and transfer of PCCs, but also provides directions for the design of efficient photocatalysts and H2 evolution in the organic phase.

2.
Nanoscale ; 15(39): 16209-16218, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37779471

RESUMO

Photothermal catalysis is a promising method for selectively oxidizing organic compounds, effectively addressing the energy-intensive and low-selective processes of thermal catalysis, as well as the slow reaction rates of photocatalysis. In this study, a ternary photothermal catalyst, Ni/CeO2/CdS, was synthesized using a simple calcination and solvothermal method. The catalyst demonstrated remarkable improvement in reaction rates and achieved nearly 100% selectivity in converting benzyl alcohol to benzaldehyde through photothermal catalysis at normal pressure. The reaction rates were 5.9 times and 63 times higher than those of CdS and Ni/CeO2 individually. XPS analysis confirmed that the thermal catalysis followed the Mars-Van Krevelen (MVK) mechanism and also proved that photocatalysis facilitated the MVK cycle. Additionally, DFT calculations showed that Ni acted as an electron transfer channel, facilitating efficient Z-scheme charge transfer. The in situ infrared technique was used to dynamically monitor the reaction process and explain the high selectivity of the product. Furthermore, detailed explanations of photocatalysis, thermocatalysis, and photothermal synergistic catalysis were proposed based on the aforementioned characterization and theoretical calculations. This approach establishes a theoretical foundation for the development of efficient photothermal catalysts.

3.
Molecules ; 28(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37764329

RESUMO

Integrating photocatalytic CO2 reduction with selective benzyl alcohol (BA) oxidation in one photoredox reaction system is a promising way for the simultaneous utilization of photogenerated electrons and holes. Herein, ZnmIn2S3+m (m = 1-5) semiconductors (ZnIn2S4, Zn2In2S5, Zn3In2S6, Zn4In2S7, and Zn5In2S8) with various composition faults were synthesized via a simple hydrothermal method and used for effective selective dehydrocoupling of benzyl alcohol into high-value C-C coupling products and reduction of CO2 into syngas under visible light. The absorption edge of ZnmIn2S3+m samples shifted to shorter wavelengths as the atomic ratio of Zn/In was increased. The conduction band and valence band position can be adjusted by changing the Zn/In ratio, resulting in controllable photoredox ability for selective BA oxidation and CO2 reduction. For example, the selectivity of benzaldehyde (BAD) product was reduced from 76% (ZnIn2S4, ZIS1) to 27% (Zn4In2S7, ZIS4), while the selectivity of hydrobenzoin (HB) was increased from 22% to 56%. Additionally, the H2 formation rate on ZIS1 (1.6 mmol/g/h) was 1.6 times higher than that of ZIS4 (1.0 mmol/g/h), and the CO formation rate on ZIS4 (0.32 mmol/g/h) was three times higher than that of ZIS1 (0.13 mmol/g/h), demonstrating that syngas with different H2/CO ratios can be obtained by controlling the Zn/In ratio in ZnmIn2S3+m. This study provides new insights into unveiling the relationship of structure-property of ZnmIn2S3+m layered crystals, which are valuable for implementation in a wide range of environment and energy applications.

4.
J Colloid Interface Sci ; 649: 547-558, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37356156

RESUMO

Solar energy-driven photocatalytic decomposition of water to produce H2 is of great significance for promoting the development of clean energy. To improve the efficiency of H2 production, a novel spherical Co2P/Cd0.9Zn0.1S (Co2P/CZS) composite with shell-core structure was successfully synthesized by electrostatic attraction. Under visible light irradiation, the optimal Co2P/CZS achieves an excellent H2 rate of 16.05 mmol h-1 g-1 in benzyl alcohol (PhCH2OH) solution, with a quantum efficiency of 34.3% at 450 nm. The Co2P thin layer coated on the CZS surface not only facilitates the photogenerated charge transfer from Co2P to CZS under visible light illumination, but reduces the energy barrier of PhCH2OH oxidation and H2 evolution. The present results show that shell-core Co2P/CZS composite may be one of promising catalyst to enhance the activity of H2 evolution, which provides an important reference basis for new catalyst design and wide prospects for further application of metal sulfides.

5.
ACS Appl Mater Interfaces ; 14(49): 54649-54661, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453244

RESUMO

Photocatalytic H2 evolution and biomass-derived alcohol oxidation is a cooperative way for improving the utilization of photogenerated charge carriers. Herein, a highly efficient photocatalyst was fabricated by decorating Zn0.5Cd0.5S with a C,N codoped CoP polyhedron (referred to as CoP, derived from ZIF-67), and then it was used for H2 evolution and 5-hydroxymethylfurfural (HMF) oxidation. For the optimized sample (20% CoP/Zn0.5Cd0.5S), the generated H2 rate is significantly enhanced from that of the HMF aqueous solution with 2,5-diformylfuran (DFF) as a concomitant product, about 31.7 times higher than the pristine Zn0.5Cd0.5S under visible light irradiation. The separation of photoexcited electrons (e-) and holes (h+) in the process was promoted, as both e- and h+ were involved in the desired conversions. From the results of density functional theory (DFT) calculations and in situ XPS spectra, the utilization of e- was further improved as a spontaneous transfer from Zn0.5Cd0.5S to CoP occurred due to the p-n heterojunction formed between Zn0.5Cd0.5S (n type) and CoP (p type). This work provides an efficient method to separate the photoinduced charge carriers and a new way for H2 evolution accompanied by transformation of HMF to DFF.

6.
Chemistry ; 26(18): 4080-4089, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31535739

RESUMO

It is still poorly understood how the first intermediates of CO2 reduction are formed and converted to multi-carbon products over Cu-based electrodes. Herein, Ag is used to decorate dendritic Cu and a high Faradaic efficiency (FE) for C2 H4 (25 %) is obtained on a CuAg electrode, which is about five times higher than dendritic Cu. The intermediates including *CO2 - , OH groups, Cu-CO, C-O rotation, and CHx species are investigated by in situ Raman spectroscopy. This work provides spectroscopic evidence that the first intermediate of CO2 reduction on Ag-decorated Cu is carboxylate anion *CO2 - bonded with the catalyst surface through the C and O atom. The formation and evolution process of the *CO2 - intermediate over the applied potential are investigated in depth as well. This research contributes to a better understanding of the mechanism of CO2 reduction and multi-carbon product formation pathways over Ag-decorated Cu.

7.
Dalton Trans ; 47(36): 12671-12683, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30151533

RESUMO

The development of stable noble metal-free photocatalysts with efficient separation and transportation of the photogenerated electrons-holes is of crucial importance for promoting the application of photocatalysis technology. Herein, we propose an electron transfer strategy by reasonable design and fabrication of novel 0D NiSx nanosheets as a co-catalyst on the surface of 1D CdS nanorods (CdS-NRs) to enhance photocatalytic hydrogen evaluation and contamination (Cr(vi), rhodamine B and bisphenol A) removal in water. Under visible light irradiation, the 0D-1D NiSx/CdS-NR nanocomposite with 1.5% NiSx loading gave a hydrogen evolution rate of 5.98 mmol h-1 g-1, which is about 5.3 times and 1.9 times higher than that of the native CdS-NRs and the optimal 1% Pt/CdS-NRs, respectively. Notably, good stability in the recycling test and a high apparent quantum efficiency of about 69.9% at 420 nm were also obtained. The 1.5% NiSx/CdS-NRs exhibited enhanced photocatalytic contamination degradation efficiency of about 2 times higher than pure CdS-NRs. In this hybrid photocatalyst, 0D NiSx nanosheets came into intimate interfacial contact with the surface of 1D CdS-NRs and played a similar role as noble metals, which could effectively improve the separation, transportation efficiencies and lifetime of photogenerated charge, and thus enhance the photocatalytic performance of CdS-NRs with more efficient conversion of solar energy. This work shows not only a possibility for the utilization of noble metal-free NiSx as a co-catalyst in the photocatalysis, but also provides new insight into the design and fabrication of high-performance composite photocatalysts (such as NiSx/g-C3N4 and NiSx/Zn3In2S6).

8.
RSC Adv ; 8(21): 11489-11497, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35542793

RESUMO

Although the CdS photocatalyst has been extensively investigated, a rational hydrothermal synthesis route is still required to prepare highly active CdS for H2 evolution reaction (HER). To optimize the precursor of the sulfur source, three prevalent organic sulfur sources of thiourea (TA), thioacetamide (TAA) and l-cysteine (l-Cys) were used for hydrothermal synthesis of CdS. Their effects on the crystallographic structure, morphology, optical property, band structure, and photocatalytic HER performance of the products were then investigated systematically. The results indicated that hexagonal branched dendritic structure CdS (S-TA) could be produced in TA solution and showed the highest HER activity due to the branched 1D structure, the smallest interfacial electron transfer resistance and the most negative conduction band bottom (E cb). Whereas in TAA, spherical CdS (S-TAA) with a mixed phase of hexagonal and cubic was obtained. The mixed phase structure and the more positive E cb of S-TAA lead to a considerably lower HER activity than that of S-TA. Poorly crystallized hexagonal CdS nanoparticles (S-Cys) were prepared in l-Cys and showed the lowest HER performance as its E cb is very near to H+ reduction potential. Thus, compared to T-AA and l-Cys, TA is a more suitable sulfur source for hydrothermal preparation of highly active CdS for HER.

9.
Chempluschem ; 81(10): 1075-1082, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31964083

RESUMO

Photoelectrochemical water splitting is a promising and environmentally friendly route for the conversion of solar energy into hydrogen. However, the efficiency of this energy conversion process is low because of the limited light absorption and rapid bulk recombination of charge carriers. In this study, the combination of a novel ternary sensitizer AgFeS2 , having a narrow bandgap of 0.9 eV, with a BiVO4 electrode is presented for the enhancement of the solar-energy-to-hydrogen conversion efficiency. The photoelectrochemical properties of this combined material were investigated and the photocurrent densities of AgFeS2 -BiVO4 composite electrodes were greatly enhanced compared with pristine BiVO4 (15 times higher at 0.6 V vs. Ag/AgCl under AM 1.5G illumination). The enhanced photoelectrochemical properties arise from extended light absorption, fast charge transfer and appropriate energy gap alignment. It was demonstrated that AgFeS2 nanowires are promising inorganic sensitizers for improving the efficiency of solar water splitting.

10.
Phys Chem Chem Phys ; 16(29): 15299-306, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24942099

RESUMO

As the inverse-opal structure facilitates the separation of electron-hole pairs and electron transfer, it may generate many radical species with strong oxidation capability. When a low bias voltage was applied on the TiO2 electrodes with inverse-opal structure, they exhibited more excellent photoelectrochemical properties and photoelectrocatalytic activity than TiO2 film under simulated solar light irradiation. When different types of active species scavengers were added, the different performances of TiO2 photonic crystals in rhodamine B degradation showed that besides ˙OH and holes, which were the main active species in the photocatalysis, O2˙(-) played a vital role in the photoelectrocatalytic degradation process. Furthermore, the stronger signal of ˙OH-trapping photoluminescence and the variation in the concentration of nitroblue tetrazolium reflected that more ˙OH and O2˙(-) could be generated in the photoelectrocatalysis than that in the photocatalysis, and O2˙(-) was partially obtained from the cathode surface. At last, the roles active species played in the photoelectrocatalytic and photocatalytic processes were compared, and the possible degradation mechanisms of TiO2 photonic crystals in photoelectrocatalytic and photocatalytic systems were put forward, which could provide a good insight into the mechanism of photoelectrocatalytic degradation on TiO2 photonic crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...