Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(1): 111-120, 2024 Feb 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38475959

RESUMO

Noncarious lesions, a multifactorial condition encompassing tooth attrition, abrasion, and erosion, have a surge in prevalence and required increased attention in clinical practice. These nonbacterial-associated tooth defects can compromise aesthetics, phonetics, and masticatory functions. When providing full-arch fixed occlusal rehabilitation for such cases, the treatment strategy should extend beyond by restoring dentition morphology and aesthetics. This report details a complex case of erosive dental wear addressed through a fully digital, full-arch fixed occlusal rehabilitation. A 4D virtual patient was created using multiple digital data sources, including intraoral scanning, 3D facial scanning, digital facebow registration, and mandibular movement tracing. With a comprehensive understanding of the masticatory system, various types of microinvasive prostheses were customized for each tooth, including labial veneers, buccal-occlusal veneers, occlusal veneers, overlays, inlays, and full crowns, were customized for each tooth. The reported digital workflow offered a predictable diagnostic and treatment strategy, which was facilitated by virtual visualization and comprehensive quality control throughout the process.


Assuntos
Atrito Dentário , Erosão Dentária , Humanos , Erosão Dentária/patologia , Erosão Dentária/terapia , Tecnologia Digital , Estética Dentária , Restaurações Intracoronárias
2.
Sci Total Environ ; 916: 169943, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199365

RESUMO

The conversion of biomass into high-performance carbon-based materials provides an opportunity to valorize biomass for advanced applications. Achieving this necessitates requires dedicated efforts and innovations in biocarbon synthesis, design, and applications. This study proposes the controllable conversion of biomass-derived cellulose into well-distributed carbon nanotubes (CNTs) by tuning the precipitation of cellulose pyrolysis generated vapors with in-situ formed ferric metal nanoparticles. The obtained CNTs exhibited lawn-like 3D architecture with similar length, uniform alignment, and dense distribution. The combined use of ferric chloride and dicyandiamide as the reagents with a mass ration of 0.162:1.05, demonstrated optimal performance in controlling the morphology of CNTs, enhancing the graphitization, and increasing the content of graphitic-N and pyridine-N. This multi-dimensional modification enhanced the electrocatalytic performance of the obtained CNTs, achieving an onset potential of 0.875 V vs. relative hydrogen electrode (RHE), a half-wave potential of 0.703 V vs. RHE, and a current density of -4.95 mA cm-2 during the oxygen reduction reaction. Following microbial fuel cells (MFCs) tests achieved an output voltage of 0.537 V and an output power density of 412.85 mW m-2, comparable to MFC with Pt/C as the cathode catalyst. This biomass-derived catalyst is recommended as a high-quality, non-noble metal alternative to traditional noble-metal catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...