Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw Learn Syst ; 34(12): 10626-10637, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35580103

RESUMO

This article proposes a novel deep-reinforcement learning-based medium access control (DL-MAC) protocol for underwater acoustic networks (UANs) where one agent node employing the proposed DL-MAC protocol coexists with other nodes employing traditional protocols, such as time division multiple access (TDMA) or q -Aloha. The DL-MAC agent learns to exploit the large propagation delays inherent in underwater acoustic communications to improve system throughput by either a synchronous or an asynchronous transmission mode. In the sync-DL-MAC protocol, the agent action space is transmission or no transmission, while in the async-DL-MAC, the agent can also vary the start time in each transmission time slot to further exploit the spatiotemporal uncertainty of the UANs. The deep Q -learning algorithm is applied to both sync-DL-MAC and async-DL-MAC agents to learn the optimal policies. A theoretical analysis and computer simulations demonstrate the performance gain obtained by both DL-MAC protocols. The async-DL-MAC protocol outperforms the sync-DL-MAC protocol significantly in sum throughput and packet success rate by adjusting the transmission start time and reducing the length of time slot.

2.
IEEE Trans Neural Netw Learn Syst ; 29(10): 4694-4708, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29990240

RESUMO

Reservoir computing (RC) is a class of neuromorphic computing approaches that deals particularly well with time-series prediction tasks. It significantly reduces the training complexity of recurrent neural networks and is also suitable for hardware implementation whereby device physics are utilized in performing data processing. In this paper, the RC concept is applied to detecting a transmitted symbol in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Due to wireless propagation, the transmitted signal may undergo severe distortion before reaching the receiver. The nonlinear distortion introduced by the power amplifier at the transmitter may further complicate this process. Therefore, an efficient symbol detection strategy becomes critical. The conventional approach for symbol detection at the receiver requires accurate channel estimation of the underlying MIMO-OFDM system. However, in this paper, we introduce a novel symbol detection scheme where the estimation of the MIMO-OFDM channel becomes unnecessary. The introduced scheme utilizes an echo state network (ESN), which is a special class of RC. The ESN acts as a black box for system modeling purposes and can predict nonlinear dynamic systems in an efficient way. Simulation results for the uncoded bit error rate of nonlinear MIMO-OFDM systems show that the introduced scheme outperforms conventional symbol detection methods.

3.
Sensors (Basel) ; 17(7)2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696377

RESUMO

This paper investigates the task assignment and path planning problem for multiple AUVs in three dimensional (3D) underwater wireless sensor networks where nonholonomic motion constraints of underwater AUVs in 3D space are considered. The multi-target task assignment and path planning problem is modeled by the Multiple Traveling Sales Person (MTSP) problem and the Genetic Algorithm (GA) is used to solve the MTSP problem with Euclidean distance as the cost function and the Tour Hop Balance (THB) or Tour Length Balance (TLB) constraints as the stop criterion. The resulting tour sequences are mapped to 2D Dubins curves in the X - Y plane, and then interpolated linearly to obtain the Z coordinates. We demonstrate that the linear interpolation fails to achieve G 1 continuity in the 3D Dubins path for multiple targets. Therefore, the interpolated 3D Dubins curves are checked against the AUV dynamics constraint and the ones satisfying the constraint are accepted to finalize the 3D Dubins curve selection. Simulation results demonstrate that the integration of the 3D Dubins curve with the MTSP model is successful and effective for solving the 3D target assignment and path planning problem.

4.
J Acoust Soc Am ; 132(6): 3809-17, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23231110

RESUMO

A frequency-domain turbo equalization (FDTE) scheme without cyclic prefix (CP) or zero padding is proposed for single-carrier, multiple-input-multiple-output underwater acoustic communication. In the first iteration of the FDTE, the received continuous data stream is divided into consecutive blocks and a combined inter-block-interference (IBI) cancellation and overlapped windowing scheme is used to diagonalize each data block for low-complexity detection in the frequency domain. Since the second iteration, IBI cancellation and CP reconstruction are applied on each block to enable effective symbol detection. This work extends the authors' previous work on frequency-domain hard-decision equalization to soft-decision turbo equalization so that it not only retains high data transmission efficiency, but also improves the bit error rate performance with slightly increased complexity due to multiple iterations. Its feasibility and effectiveness have been tested by field trial data from the ACOMM09 underwater communication experiment.


Assuntos
Acústica , Processamento de Sinais Assistido por Computador , Som , Telecomunicações , Água , Acústica/instrumentação , Desenho de Equipamento , Estudos de Viabilidade , Movimento (Física) , Oceanos e Mares , Espectrografia do Som , Telecomunicações/instrumentação , Fatores de Tempo , Transdutores
5.
J Acoust Soc Am ; 128(5): 2910-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21110586

RESUMO

This paper proposes a single carrier (SC) receiver scheme with bandwidth-efficient frequency-domain equalization (FDE) for underwater acoustic (UWA) communications employing multiple transducers and multiple hydrophones. Different from the FDE methods that perform FDE on a whole data block, the proposed algorithm implements an overlapped-window FDE by partitioning a large block into small subblocks. A decision-directed channel estimation scheme is incorporated with the overlapped-window FDE to track channel variations and improve the error performance. The proposed algorithm significantly increases the length of each block and keeps the same number of training symbols per block, hence achieving better data efficiency without performance degradation. The proposed scheme is tested by the undersea data collected in the Rescheduled Acoustic Communications Experiment (RACE) in March 2008. Without coding, the 2-by-12 MIMO overlapped-window FDE reduces the average bit error rate (BER) over traditional SC-FDE schemes by 74.4% and 84.6% for the 400 m and 1000 m range systems, respectively, at the same data efficiency. If the same BER performance is required, the proposed algorithm has only 8.4% transmission overhead, comparing to over 20% overhead in other existing UWA OFDM and SC-FDE systems. The improved data efficiency and/or error performance of the proposed FDE scheme is achieved by slightly increased computational complexity over traditional SC-FDE schemes.


Assuntos
Acústica , Algoritmos , Meios de Comunicação , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Oceanos e Mares , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...