Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 650(Pt B): 1434-1445, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481781

RESUMO

Magnetic-dielectric synergy is currently regarded as among the most effective approaches to achieve low-frequency electromagnetic wave absorption (EMA). However, designing and fabricating EMA materials with tunable magnetic-dielectric balance towards high-performance low-frequency EMA remains challenging. Herein, a polymer self-assembly guided heterogeneous structure engineering strategy is proposed to fabricate hierarchical magnetic-dielectric nanocomposite. Polymer assemblies not only can be employed as intermediates to encapsulate metal-organic frameworks and load metal hydroxide, but also that they play a crucial role for the in-situ formation of polycrystalline FeCo/Co composite nanoparticles. As a result, the minimum reflection loss (RLmin) can reach -59.61 dB at 5.4 GHz (4.8 mm) with a 20 wt% filler loading, while the effective absorption bandwidth (EAB, RLmin ≤ -10 dB) is 2.16 GHz, exhibiting excellent low-frequency EMA performance. Systematic investigations demonstrate that hierarchical mesoporous carbon matrix that supports FeCo/Co composite nanoparticles is beneficial for optimizing impedance matching and increasing attenuation capacity. In general, this study opens up new prospects for developing magnetic-dielectric EMA materials using a polymer self-assembly guided heterogeneous structure engineering strategy, which may receive significant attention in future research.

2.
J Colloid Interface Sci ; 616: 618-630, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35240440

RESUMO

The rational regulation of the magnetic-dielectric composition and microstructures of the absorber is considered an important approach to optimize both the impedance matching and the electromagnetic microwave attenuation ability. Along these lines, a novel architecture-controlled large-caliber carbon nanotube/mesoporous carbon/Fe3C nanoparticle-based hybrid nanocomposites (CNT/C/Fe3C), which were derived from the CNT/polyimide (PI) assemblies anchoring ferric oxide hydrate nanoprecipitates, are presented in this work. The proposed configurations were prepared by applying a cooperative co-assembly strategy and high-temperature pyrolysis procedure for the development of an ultra-lightweight electromagnetic microwave absorber. The employed hierarchically tubular heterogeneous architecture is composed of a highly graphited CNT supporting skeleton, polyimide assemblies-converted carbon interlayer with mesopores, and uniformly distributed magnetic Fe3C nanoparticles. This unique hierarchical structure can not only induce multiple reflection and scattering effects of the incident electromagnetic microwave but also trigger dipole/interfacial polarization, ferromagnetic resonance and eddy current loss that are beneficial for the synergistic dielectric and magnetic loss. Moreover, the large-caliber CNT and mesoporous carbon interlayer can endow the as-prepared absorber with lightweight characteristics. Hence, the proposed CNT/C-EDA/Fe3C-900 hybrid nanocomposite exhibits a minimum reflection loss (RL) of -48.4 dB at a matching thickness of 3.2 mm, and the effective absorption bandwidth (RL ≤ -10 dB) almost covers the whole X-band only with a 5 wt% filler loading. Undoubtedly, these encouraging outcomes will promote the development of hierarchical engineering techniques of novel magnetic-dielectric nanocomposite absorbers.


Assuntos
Nanocompostos , Nanopartículas , Nanotubos de Carbono , Magnetismo , Micro-Ondas
3.
J Am Chem Soc ; 141(11): 4541-4546, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30835105

RESUMO

Synthesizing and characterizing sequence-defined polymers with positively charged backbone are great challenges. By alternately processing Menschutkin reaction and Cu-catalyzed azide-alkyne cycloaddition reaction, we successfully synthesized series of scalable cationic sequence-defined polymers with quaternary ammonium backbone up to 12 repeating units and characterized their precise structures. Due to the dramatic polarity difference between weak polar feed molecules and strong polar target molecules, simple precipitation in weak polar solvents is enough to obtain pure sequence-defined polymers. Such a polar-inverse strategy (PIS), without protecting groups and solid support, offers extremely high yields up to 68% after 12 reaction steps (i.e., average yield >95% for each step), favoring cost-effective large-scale production. Because of the independent reactivity of selected functional groups, the cationic sequence-defined polymers are highly programmable, including backbone composition, sequence order, functional side groups, terminal groups and topological structure. Sequence information decoding is easily achieved according to Maldi-Tof mass spectrum without retrospecting its synthetic history, resulting in a great superiority in the field of information transmitting and reading. The resulting multifunctional sequence-defined polymers are water-soluble and positively charged, opening the avenue to bioapplications such as condensing DNA, gene transfection and drug delivery.

4.
Chem Soc Rev ; 44(12): 4091-130, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25902871

RESUMO

Hyperbranched polymers (HPs) are highly branched three-dimensional (3D) macromolecules. Their globular and dendritic architectures endow them with unique structures and properties such as abundant functional groups, intramolecular cavities, low viscosity, and high solubility. HPs can be facilely synthesized via a one-pot polymerization of traditional small molecular monomers or emerging macromonomers. The great development in synthetic strategies, from click polymerization (i.e., copper-catalyzed azide-alkyne cycloaddition, metal-free azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, thiol-ene/yne addition, Diels-Alder cycloaddition, Menschutkin reaction, and aza-Michael addition) to recently reported multicomponent reactions, gives rise to diverse HPs with desirable functional/hetero-functional groups and topologies such as segmented or sequential ones. Benefiting from tailorable structures and correspondingly special properties, the achieved HPs have been widely applied in various fields such as light-emitting materials, nanoscience and technology, supramolecular chemistry, biomaterials, hybrid materials and composites, coatings, adhesives, and modifiers. In this review, we mainly focus on the progress in the structural control, synthesis, functionalization, and potential applications of both conventional and segmented HPs reported over the last decade.

5.
Chem Commun (Camb) ; 50(63): 8712-4, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24964315

RESUMO

A series of water soluble octa-functionalized POSSs were facilely synthesized via thiol-ene and Menschutkin click chemistry. Among them, octa-alkynyl POSS further reacted with azide-terminal alkyl long chains, resulting in a well-defined, amphiphilic octopus-like POSS. For the first time it was used for host-guest encapsulation and it exhibited an ultrahigh loading capability.

6.
Sci Rep ; 4: 4387, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24633000

RESUMO

Sequence-controlled polymers (SCPs) such as DNA and proteins play an important role in biology. Many efforts have been devoted to synthesize SCPs in the past half a century. However, to our knowledge, the artificial sequences containing independently functional groups have never been reported. Here, we present a facile and scalable approach based on radical-initiated step-growth polymerization to synthesize sequence-controlled functional polymers (SCFPs) with various topologies, covering from linear to random and hyperbranched polymers. The functional groups, such as OH/NH2, OH/COOH, and NH2/N3, alternately arranged along the chain, which were further selectively functionalized to achieve DNA-mimic and hetero-multifunctional SCPs. This user-friendly strategy exhibits advantages of commercially available monomers, catalyst-free process, fast reaction, high yield and water solvent, opening a general approach to facile and scalable synthesis of SCFPs.


Assuntos
Alcinos/química , Materiais Biomiméticos/química , DNA/química , Polímeros/química , Compostos de Sulfidrila/química , Materiais Biomiméticos/síntese química , Catálise , Radicais Livres/química , Polimerização , Polímeros/síntese química , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...