Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 74, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395929

RESUMO

Due to its unique structure, articular cartilage has limited abilities to undergo self-repair after injury. Additionally, the repair of articular cartilage after injury has always been a difficult problem in the field of sports medicine. Previous studies have shown that the therapeutic use of mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) has great potential for promoting cartilage repair. Recent studies have demonstrated that most transplanted stem cells undergo apoptosis in vivo, and the apoptotic EVs (ApoEVs) that are subsequently generated play crucial roles in tissue repair. Additionally, MSCs are known to exist under low-oxygen conditions in the physiological environment, and these hypoxic conditions can alter the functional and secretory properties of MSCs as well as their secretomes. This study aimed to investigate whether ApoEVs that are isolated from adipose-derived MSCs cultured under hypoxic conditions (hypoxic apoptotic EVs [H-ApoEVs]) exert greater effects on cartilage repair than those that are isolated from cells cultured under normoxic conditions. Through in vitro cell proliferation and migration experiments, we demonstrated that H-ApoEVs exerted enhanced effects on stem cell proliferation, stem cell migration, and bone marrow derived macrophages (BMDMs) M2 polarization compared to ApoEVs. Furthermore, we utilized a modified gelatine matrix/3D-printed extracellular matrix (ECM) scaffold complex as a carrier to deliver H-ApoEVs into the joint cavity, thus establishing a cartilage regeneration system. The 3D-printed ECM scaffold provided mechanical support and created a microenvironment that was conducive to cartilage regeneration, and the H-ApoEVs further enhanced the regenerative capacity of endogenous stem cells and the immunomodulatory microenvironment of the joint cavity; thus, this approach significantly promoted cartilage repair. In conclusion, this study confirmed that a ApoEVs delivery system based on a modified gelatine matrix/3D-printed ECM scaffold together with hypoxic preconditioning enhances the functionality of stem cell-derived ApoEVs and represents a promising approach for promoting cartilage regeneration.


Assuntos
Cartilagem Articular , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Hidrogéis , Alicerces Teciduais/química , Gelatina , Células-Tronco , Hipóxia
2.
Regen Biomater ; 10: rbad085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37814675

RESUMO

The field of regenerative medicine faces a notable challenge in terms of the regeneration of articular cartilage. Without proper treatment, it can lead to osteoarthritis. Based on the research findings, human umbilical cord mesenchymal stem cells (hUMSCs) are considered an excellent choice for regenerating cartilage. However, there is still a lack of suitable biomaterials to control their ability to self-renew and differentiate. To address this issue, in this study using tetrahedral framework nucleic acids (tFNAs) as a new method in an in vitro culture setting to manage the behaviour of hUMSCs was proposed. Then, the influence of tFNAs on hUMSC proliferation, migration and chondrogenic differentiation was explored by combining bioinformatics methods. In addition, a variety of molecular biology techniques have been used to investigate deep molecular mechanisms. Relevant results demonstrated that tFNAs can affect the transcriptome and multiple signalling pathways of hUMSCs, among which the PI3K/Akt pathway is significantly activated. Furthermore, tFNAs can regulate the expression levels of multiple proteins (GSK3ß, RhoA and mTOR) downstream of the PI3K-Akt axis to further enhance cell proliferation, migration and hUMSC chondrogenic differentiation. tFNAs provide new insight into enhancing the chondrogenic potential of hUMSCs, which exhibits promising potential for future utilization within the domains of AC regeneration and clinical treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...