Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 960043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274714

RESUMO

Skin is an important ecosystem that links the human body and the external environment. Previous studies have shown that the skin microbial community could remain stable, even after long-term exposure to the external environment. In this study, we explore two questions: Do there exist strains or genetic variants in skin microorganisms that are individual-specific, temporally stable, and body site-independent? And if so, whether such microorganismal genetic variants could be used as markers, called "fingerprints" in our study, to identify donors? We proposed a framework to capture individual-specific DNA microbial fingerprints from skin metagenomic sequencing data. The fingerprints are identified on the frequency of 31-mers free from reference genomes and sequence alignments. The 616 metagenomic samples from 17 skin sites at 3-time points from 12 healthy individuals from Integrative Human Microbiome Project were adopted. Ultimately, one contig for each individual is assembled as a fingerprint. And results showed that 89.78% of the skin samples despite body sites could identify their donors correctly. It is observed that 10 out of 12 individual-specific fingerprints could be aligned to Cutibacterium acnes. Our study proves that the identified fingerprints are temporally stable, body site-independent, and individual-specific, and can identify their donors with enough accuracy. The source code of the genetic identification framework is freely available at https://github.com/Ying-Lab/skin_fingerprint.

2.
Front Microbiol ; 11: 2067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983048

RESUMO

Capturing group-specific sequences between two groups of genomic/metagenomic sequences is critical for the follow-up identifications of singular nucleotide variants (SNVs), gene families, microbial species or other elements associated with each group. A sequence that is present, or rich, in one group, but absent, or scarce, in another group is considered a "group-specific" sequence in our study. We developed a user-friendly tool, KmerGO, to identify group-specific sequences between two groups of genomic/metagenomic long sequences or high-throughput sequencing datasets. Compared with other tools, KmerGO captures group-specific k-mers (k up to 40 bps) with much lower requirements for computing resources in much shorter running time. For a 1.05 TB dataset (.fasta), it takes KmerGO about 21.5 h (including k-mer counting) to return assembled group-specific sequences on a regular stand-alone workstation with no more than 1 GB memory. Furthermore, KmerGO can also be applied to capture trait-associated sequences for continuous-trait. Through multi-process parallel computing, KmerGO is implemented with both graphic user interface and command line on Linux and Windows free from any pre-installed supporting environments, packages, and complex configurations. The output group-specific k-mers or sequences from KmerGO could be the inputs of other tools for the downstream discovery of biomarkers, such as genetic variants, species, or genes. KmerGO is available at https://github.com/ChnMasterOG/KmerGO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...