Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402427, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751309

RESUMO

Halogenated methane serves as a universal platform molecule for building high-value chemicals. Utilizing sodium chloride solution for photocatalytic methane chlorination presents an environmentally friendly method for methane conversion. However, competing reactions in gas-solid-liquid systems leads to low efficiency and selectivity in photocatalytic methane chlorination. Here, an in situ method is employed to fabricate a hydrophobic layer of TaOx species on the surface of NaTaO3. Through in-situ XPS and XANES spectra analysis, it is determined that TaOx is a coordination unsaturated species. The TaOx species transforms the surface properties from the inherent hydrophilicity of NaTaO3 to the hydrophobicity of TaOx/NaTaO3, which enhances the accessibility of CH4 for adsorption and activation, and thus promotes the methane chlorination reaction within the gas-liquid-solid three-phase system. The optimized TaOx/NaTaO3 photocatalyst has a good durability for multiple cycles of methane chlorination reactions, yielding CH3Cl at a rate of 233 µmol g-1 h-1 with a selectivity of 83%. In contrast, pure NaTaO3 exhibits almost no activity toward CH3Cl formation, instead catalyzing the over-oxidation of CH4 into CO2. Notably, the activity of the optimized TaOx/NaTaO3 photocatalyst surpasses that of reported noble metal photocatalysts. This research offers an effective strategy for enhancing the selectivity of photocatalytic methane chlorination using inorganic chlorine ions.

2.
Adv Mater ; 36(4): e2308487, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918976

RESUMO

Lead-free double perovskites (DPs) are emerging highly stable emitters with efficient broadband self-trapped exciton (STE) photoluminescence (PL), but their low electroluminescent (EL) efficiency is a critical shortcoming. This work promotes the external quantum efficiency (EQE) and luminance of DP-based white light-emitting diode (wLED) with a normal device structure to 0.76% and 2793 cd m-2 via two modifications: This work prevents the formation of adverse metallic silver, spatially confined STE, and lowers local site symmetry in Cs2 Na0.4 Ag0.6 In0.97 Bi0.03 Cl6 DP by terbium doping; and this work develops a guest-host strategy to improve film morphology, reduce defect density, and increase carrier mobility. These alterations cause substantial increase in STE radiative recombination and charge injection efficiency of perovskite layer. Finally, pure white EL with ideal color coordinates of (0.328, 0.329) and a record-breaking optoelectronic performance is achieved by introducing additional green carbon dots in LED to fill the deficient green component.

3.
Biosens Bioelectron ; 239: 115626, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643493

RESUMO

It is difficult to show microbial growth kinetics online when they grow in complex matrices. We presented a novel strategy to address this challenge by developing a high-performance microbial growth analyzer (HPMGA), which employed a unique 32-channel capacitively coupled contactless conductivity detector as a sensing element and fixed with a CellStatz software. It was capable of online showing accurate and repeatable growth curves of well-dispersed and bad-dispersed microbes, whether they grew in homogeneous simple culture broth or heterogeneous complex matrices. Moreover, it could automatically report key growth kinetics parameters. In comparison to optical density (OD), plate counting and broth microdilution (BMD) methods, we demonstrated its practicability in five scenarios: 1) the illustration of the growth, growth rate, and acceleration curves of Escherichia coli (E. coli); 2) the antimicrobial susceptibility testing (AST) of Oxacillin against Staphylococcus aureus (S. aureus); 3) the determination of Ag nanoparticle toxicity on Providencia rettgeri (P. rettgeri); 4) the characterization of milk fermentation; and 5) the enumeration of viable pathogenic Vibrio in shrimp body. Results highlighted that the HPMGA method had the advantages of universality and effectivity. This technology would significantly facilitate the routine analysis of microbial growth in many fields (biology, medicine, clinic, life, food, environment, and ecology), paving an avenue for microbiologists to achieve research goals that have been inhibited for years due to a lack of practical analytical methods.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Escherichia coli , Cinética , Prata , Staphylococcus aureus , Leite
4.
Adv Mater ; 35(36): e2302275, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37228040

RESUMO

Deep-red light-emitting diodes (DR-LEDs, >660 nm) with high color-purity and narrow-bandwidth emission are promising for full-color displays and solid-state lighting applications. Currently, the DR-LEDs are mainly based on conventional emitters such as organic materials and heavy-metal based quantum dots (QDs) and perovskites. However, the organic materials always suffer from the complicated synthesis, inferior color purity with full-width at half-maximum (FWHM) more than 40 nm, and the QDs and perovskites still suffer from serious problems related to toxicity. Herein, this work reports the synthesis of efficient and high color-purity deep-red carbon dots (CDs) with a record narrow FWHM of 21 nm and a high quantum yield of more than 50% from readily available green plants. Moreover, an exciplex host is further established using a polymer and small molecular blend, which has been shown to be an efficient strategy for producing high color-purity monochrome emission from deep-red CDs via Förster energy transfer (FET). The deep-red CD-LEDs display high color-purity with Commission Internationale de l'Eclairage (CIE) coordinates of (0.692, 0.307). To the best of the knowledge, this is the first report of high color-purity CD-LEDs in the deep-red region, opening the door for the application of CDs in the development of high-resolution light-emitting display technologies.

5.
Mater Horiz ; 10(4): 1406-1415, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36756907

RESUMO

Nonlinear multi-phonon (2-7) absorption in the Na+/Bi3+-alloyed Cs2AgInCl6 lead-free double perovskites with ∼100% photoluminescence quantum yield and superior stability is observed for the first time, which can be pumped by a femtosecond laser in a wide spectral range (800-2600 nm). First-principles calculations verify that the parity-forbidden transition from the valence band maximum and conduction band minimum (at the Γ point) is not broken by Na+/Bi3+ doping, and strong optical band-to-band absorption occurs at the L&X points. Time-resolved emission spectra evidence that single-photon and multi-photon pumping leads to the same self-trapped exciton transition and high-order nonlinear absorption will not induce a remarkable thermal effect. Finally, we demonstrate that the Cs2Na0.4Ag0.6In0.99Bi0.01Cl6 DP shows great potential for next-generation wavelength-selective and highly sensitive multiphoton imaging applications.

6.
Light Sci Appl ; 11(1): 52, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35256583

RESUMO

Impurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels. Herein, a family of lanthanide (Ln3+) ions was successfully incorporated into a Bi:Cs2AgInCl6 lead-free double-perovskite (DP) semiconductor, expanding the spectral range from visible (Vis) to near-infrared (NIR) and improving the photoluminescence quantum yield (PLQY). After multidoping with Nd, Yb, Er and Tm, Bi/Ln:Cs2AgInCl6 yielded an ultrabroadband continuous emission spectrum with a full width at half-maximum of ~365 nm originating from intrinsic self-trapped exciton recombination and abundant 4f-4f transitions of the Ln3+ dopants. Steady-state and transient-state spectra were used to ascertain the energy transfer and emissive processes. To avoid adverse energy interactions between the various Ln3+ ions in a single DP host, a heterogeneous architecture was designed to spatially confine different Ln3+ dopants via a "DP-in-glass composite" (DiG) structure. This bottom-up strategy endowed the prepared Ln3+-doped DIG with a high PLQY of 40% (nearly three times as high as that of the multidoped DP) and superior long-term stability. Finally, a compact Vis-NIR ultrabroadband (400~2000 nm) light source was easily fabricated by coupling the DiG with a commercial UV LED chip, and this light source has promising applications in nondestructive spectroscopic analyses and multifunctional lighting.

7.
Nanoscale ; 14(9): 3407-3415, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35175270

RESUMO

The development of advanced luminescent materials is highly desirable for addressing the rising threat of forgery. However, it is challenging to achieve stable full-color upconversion (UC) tuning in the same matrix upon a single-beam light excitation so as to ensure that authentic items are irreproducible. Herein, hexagonal Er/Tm:CsYb2F7 nanocrystals (NCs) embedded inorganic glass via an in situ crystallization strategy is fabricated, which can emit blue, cyan, green, yellow, orange, red and near-infrared (NIR) UC emissions by simply modifying an incident 980 nm laser power. This UC tuning is attributed to the combination roles of the highly efficient laser-induced photothermal effect of the CsYb2F7 host and simultaneous emissions of Er and Tm activators. Importantly, the robust inorganic glass matrix endows Er/Tm:CsYb2F7 NCs with excellent water resistance and the ability to withstand high-power laser irradiation. Based on these unique characteristics, a proof-of-concept anti-counterfeiting experiment is designed. The results indicate that dynamic full-color UC luminescence patterns can be easily tuned by simply changing the power of the incident 980 nm laser. The present work not only confirms that the designed photothermal material can increase information security, but also provides a new idea for practical applications in the field of anti-counterfeiting.

8.
Dalton Trans ; 51(8): 3357-3365, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35137731

RESUMO

A lithium-sulfur battery, a potential next-generation secondary battery, is affected by poor conductivity of sulfur and the dissolution of intermediate polysulfides. Here we report a lithium-sulfur battery with ultrahigh sulfur loading and excellent cycling stability using porous graphitic carbon (PGC) as a high-conductivity carrier of sulfur and carbon fiber with crisscross conductive framework as an electric attachment site of sulfur. PGC is fabricated through a simple and environmentally friendly synthesis process involving high-temperature graphitization in a N2 atmosphere followed by an annealing process in air. Due to the presence of porous graphitic structure, with C-O termination groups, PGC endows the lithium-sulfur battery system with excellent cycling performance. The lithium-sulfur battery cathode constructed by PGC with a sulfur loading of 2.5 mg cm-2 still retains a high specific capacity of 734.4 mA h g-1 after 200 cycles. Meanwhile, an ultrahigh sulfur loading of 12.8 mg cm-2 for a CR2025 coin cell is achieved, which is the highest sulfur loading reported in the literature for the coin cell. The ultrahigh sulfur loading cell also shows good electrochemical properties, profiting from the mesopores terminated with C-O groups, high specific surface area of 1129.9 m2 g-1 and high-conductivity graphitic structure.

9.
Nanoscale ; 14(6): 2352-2358, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35088803

RESUMO

Among the numerous two-dimensional van der Waals (vdW) magnetic materials, Fe3GeTe2 (FGT), due to its outstanding properties such as metallicity, high Curie temperature and strong perpendicular magnetic anisotropy, has quickly emerged as a candidate with the most potential for the fabrication of all-vdW spintronic devices. Here, we fabricated a simple vertical homojunction based on two few-layer exfoliated FGT flakes. Under a certain range of external magnetic fields, the magnetization reversal can be achieved by applying a negative or positive pulse current, which can reduce the coercivity through the spin orbit torque of FGT itself in addition to the Joule heat. Moreover, the asymmetrical switching current is caused by the spin transfer torque in the homojunction. As the temperature increases, the magnetization reversal can be observed at a smaller external magnetic field. Our demonstrations of the current-assisted magnetization reversal under a magnetic field in all-vdW structures may provide support for the potential application of vdW magnetism.

10.
Adv Mater ; 33(51): e2104658, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34642998

RESUMO

2D layered chalcogenide semiconductors have been proposed as a promising class of materials for low-dimensional electronic, optoelectronic, and spintronic devices. Here, all-2D van der Waals vertical spin-valve devices, that combine the 2D layered semiconductor InSe as a spacer with the 2D layered ferromagnetic metal Fe3 GeTe2 as spin injection and detection electrodes, are reported. Two distinct transport behaviors are observed: tunneling and metallic, which are assigned to the formation of a pinhole-free tunnel barrier at the Fe3 GeTe2 /InSe interface and pinholes in the InSe spacer layer, respectively. For the tunneling device, a large magnetoresistance (MR) of 41% is obtained under an applied bias current of 0.1 µA at 10 K, which is about three times larger than that of the metallic device. Moreover, the tunneling device exhibits a lower operating bias current but a more sensitive bias current dependence than the metallic device. The MR and spin polarization of both the metallic and tunneling devices decrease with increasing temperature, which can be fitted well by Bloch's law. These findings reveal the critical role of pinholes in the MR of all-2D van der Waals ferromagnet/semiconductor heterojunction devices.

11.
ACS Appl Mater Interfaces ; 13(13): 15701-15708, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764737

RESUMO

Optical security labels play a significant role in protecting both our wealth and health. However, simultaneously meeting the requirements including low-cost fabrication, easy detection, and high-level security is still challenging for security labels. Here, we design an unclonable anti-counterfeiting system with triple-level security by using the inkjet printing technique, which can be authenticated by naked eyes, a portable microscope, and a fluorescence microscope. These labels are achieved by printing microscale quantum dot (QD) ink droplets on premodified substrates with random-distributed glass microspheres. Due to the unique capillary action induced by the glass microspheres, QDs in the ink droplets are deposited around the microspheres, forming microscale multicircular patterns. Multiple pinning of QDs at the three-phase contact lines appears during the evaporation of the droplet, resulting in the formation of a nanoscale labyrinthine pattern around the microspheres. The nanoscale labyrinth pattern and the microscale multicircular microsphere array, together with the printed macroscopic image, constitute a triple-level progressive anti-counterfeiting system. Moreover, the system is compatible with an artificial intelligence-based identification strategy that allows rapid identification and verification of the unclonable security labels.

12.
J Hazard Mater ; 413: 125320, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33611037

RESUMO

The lack of analytical strategies to directly determine the bacteriostatic activity of nanomaterials in complex aqueous media (e.g., environmentally relevant scenarios) seriously hampers the harvest of reliable data for nanomaterial risk assessment. Here, we created an automated phenotypic method based on a developed multi-channel contactless conductometric sensor. Bacterial growth kinetics of E. coli and S. aureus were determined via on-line monitoring of conductivity changes in simple media (e.g., liquid LB broth) and complex media (e.g., relevant river water and seawater samples with diverse pH, salinity, conductivity, turbidity, chemical oxygen demand and total suspended solids). The high temporal resolution growth curves provide detailed information on the bacteria inhibition of the model nanomaterial - Au nanospheres, Au nanorods, Ag nanospheres and Ag nanocubes - at each growth stage, thus enabling users to directly obtain minimum inhibitory concentrations. The method highlights the advantages of universality, simplicity and affordability. It opens up possibilities for the development of a powerful analytical platform for researches in the field of nanoscience, e.g. to assess ecotoxicity of nanomaterials.


Assuntos
Nanoestruturas , Staphylococcus aureus , Análise da Demanda Biológica de Oxigênio , Escherichia coli , Testes de Sensibilidade Microbiana , Nanoestruturas/toxicidade
13.
RSC Adv ; 11(30): 18381-18386, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480930

RESUMO

Carbon-based fluorescent security labels are effective methods to prevent counterfeiting. However, the properties of poor optical stability, complex and energy-consuming synthesis processes and weak bonding with substrates of carbon-based fluorescent materials limit their application prospects. Here, a novel in situ fluorescent patterning strategy is developed to achieve covert, chemically stable and solvent-tolerant cellulose-based security labels by UV exposure. The unsaturated double bonds as the origin of the fluorescence were generated during the photodegradation process under UV exposure. The fluorescent emission of cellulose-based materials reveals excellent stability under acidic, alkaline, reducing, oxidizing and non-polar solvent environments. These advantages give the cellulose nanofiber based security label fantastic potential applications.

14.
ACS Appl Mater Interfaces ; 12(41): 46073-46083, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929955

RESUMO

Cadmium sulfide (CdS) as one of the most common visible-light-responsive photocatalysts has been widely investigated for hydrogen generation. However, its low solar-hydrogen conversion efficiency caused by fast carrier recombination and poor catalytic activity hinders its practical applications. To address this issue, we develop a novel and highly efficient nickel-cobalt phosphide and phosphate cocatalyst-modified CdS (NiCoP/CdS/NiCoPi) photocatalyst for hydrogen evolution. The dual-cocatalysts were simultaneously deposited on CdS during one phosphating step by using sodium hypophosphate as the phosphorus source. After the loading of the dual-cocatalysts, the photocurrent of CdS significantly increased, while its electrical impedance and photoluminescence emission dramatically decreased, which indicates the enhancement of charge carrier separation. It was proposed that the NiCoP cocatalyst accepts electrons and promotes hydrogen evolution, while the NiCoPi cocatalyst donates electrons and accelerates the oxidation of sacrificial agents (e.g., lactic acid). Consequently, the visible-light-driven hydrogen evolution of this composite photocatalyst greatly improved. The dual-cocatalyst-modified CdS with a loading content of 5 mol % showed a high hydrogen evolution rate of 80.8 mmol·g-1·h-1, which was 202 times higher than that of bare CdS (0.4 mmol·g-1·h-1). This is the highest enhancement factor for metal phosphide-modified CdS photocatalysts. It also exhibited remarkable stability in a continuous photocatalytic test with a total reaction time of 24 h.

15.
ACS Appl Mater Interfaces ; 12(35): 39649-39656, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32698573

RESUMO

Anticounterfeiting techniques based on physical unclonable functions exhibit great potential in security protection of extensive commodities from daily necessities to high-end products. Herein, we propose a facile strategy to fabricate an unclonable super micro fingerprint (SMFP) array by introducing in situ grown perovskite crystals for multilevel anticounterfeiting labels. The unclonable features are formed on the basis of the differential transportation of a microscale perovskite precursor droplet during the inkjet printing process, coupled with random crystallization and Ostwald ripening of perovskite crystals originating from their ion crystal property. Furthermore, the unclonable patterns can be readily tailored by tuning in situ crystallization conditions of the perovskite. Three-dimensional height information on the perovskite patterns are introduced into a security label and further transformed into structural color, significantly enhancing the capacity of anticounterfeiting labels. The SMFPs are characterized with tunable multilevel anticounterfeiting properties, including macroscale patterns, microscale unclonable pattern, fluorescent two-dimensional pattens, and colorful three-dimensional information.

16.
Dalton Trans ; 49(31): 10799-10807, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32706843

RESUMO

Here we report a supercapacitor with high energy density and high cycling stability using low-cost and environmentally friendly CoMoO4/bamboo charcoal (BC) hybrid materials as the cathode. The hybrid materials were fabricated via a one-pot solvothermal reaction followed by an annealing process. The optimized CoMoO4/BC hybrid material has a specific surface area of 74.4 m2 g-1, being 1.7-fold higher than that of the CoMoO4 precursor. The hybrid electrode shows a high specific capacitance of 422.3 F g-1 at 0.5 A g-1 and 304.8 F g-1 at 50 A g-1. The as-assembled CoMoO4/BC||activated carbon supercapacitor exhibits a high energy density of 56.7 W h kg-1 and 18.3 W h kg-1 at a power density of 785 W kg-1 and 40 000 W kg-1, respectively. Furthermore, it also shows excellent long-term cycling stability. Subjected to 40 000 cycles of charge-discharge test at a current density of 50 A g-1, there is only about 10% capacitance loss (occurring only during the first 5000 cycles). This excellent electrochemical performance is ascribed to the covalent C-Mo and C-O bonds formed between CoMoO4 and BC as well as the porous feature of the hybrid material, which provide highways for electron transfer and ion transportation within the electrodes and at the electrode-electrolyte interface.

17.
Nanoscale ; 12(17): 9471-9480, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347271

RESUMO

Highly flexible and stable plasmonic nanopaper comprised of silver nanocubes and cellulose nanofibres was fabricated through a self-assembly-assisted vacuum filtration method. It shows significant enhancement of the fluorescence emission with an enhancement factor of 3.6 and Raman scattering with an enhancement factor of ∼104, excellent mechanical properties with tensile strength of 62.9 MPa and Young's modulus of 690.9 ± 40 MPa, and a random distribution of Raman intensity across the whole nanopaper. The plasmonic nanopapers were encoded with multiplexed optical signals including surface plasmon resonance, fluorescence and SERS for anti-counterfeiting applications, thus increasing security levels. The surface plasmon resonance and fluorescence information is used as the first layer of security and can be easily verified by the naked eye, while the unclonable SERS mapping is used as the second layer of security and can be readily authenticated by Raman spectroscopy using a computer vision technique.

18.
Inorg Chem ; 59(2): 1566-1575, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31913603

RESUMO

Photocatalytic hydrogen generation will benefit from the realization of more active but less expensive cocatalysts compared with noble metal counterparts. Herein we developed a universal vapor deposition method that selectively uses the thermal decomposition products of sodium hypophosphite as a phosphorus source for the fabrication of inexpensive and highly efficient metal phosphate (MPi) modified CdS nanorods. We find that the modification with a bimetal phosphate (i.e., 5 wt % NiCoPi) leads to an activity enhancement by a factor of approximately 52 in boosting visible-light-driven hydrogen evolution relative to the pristine CdS nanorods. The photocatalyst exhibits a high hydrogen generation rate of 13.44 mmol·g-1·h-1, which is much higher than that of its single metal counterparts (NiPi, 8.70 mmol·g-1·h-1; CoPi, 5.79 mmol·g-1·h-1) and 1 wt % Pt modified CdS (1.33 mmol·g-1·h-1). Its apparent quantum efficiency reaches 23.5% at 420 nm. Furthermore, it also shows remarkable photostability for eight consecutive cycles of photocatalytic activity tests with total reaction time of 24 h. The excellent photocatalytic performance of the photocatalyst is believed to be associated with the in situ formed NiICoP and NiCoIIIPi cocatalysts, which not only play an important role in photogenerated charge separation but also provide highly active catalytic reaction sites for the corresponding hydrogen evolution reaction and the sacrificial agent oxidation reaction.

19.
ACS Appl Mater Interfaces ; 11(33): 30089-30097, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31342737

RESUMO

Targeted design of organic semiconductors in organic spintronics is relatively limited. Therefore, four conjugated polymers with analogous structures based on isoindigo (IID) units were designed and synthesized to investigate the structure-property relationships in spin and charge carrier transport. Structural design strategies include introduction of pyridinic nitrogen atoms into IID units to change electronic structures and alteration of different branching points of alkyl chains to adjust the aggregation structure. By fabricating polymer field-effect transistors (PFETs) and organic spin valves (OSVs), all of the polymers exhibited good ambipolar field-effect properties (all of the mobilities exceeding 0.3 cm2 V-1 s-1) and relatively high magnetoresistance (MR) values (maximum up to 25%). Most importantly, it is found that the introduction of pyridinic nitrogen into the IID units can improve MR values of OSVs and electron mobilities of PFETs, whereas the extension of alkyl chain branching points can reduce MR values of the conjugated polymers. This work is the first attempt to thoroughly study the structure-property relationship in the OSVs, combined with molecular design of the conjugated polymers, which provides a guideline for molecular engineering, especially for organic spintronics.

20.
Nat Commun ; 10(1): 2409, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160579

RESUMO

An ideal anti-counterfeiting technique has to be inexpensive, mass-producible, nondestructive, unclonable and convenient for authentication. Although many anti-counterfeiting technologies have been developed, very few of them fulfill all the above requirements. Here we report a non-destructive, inkjet-printable, artificial intelligence (AI)-decodable and unclonable security label. The stochastic pinning points at the three-phase contact line of the ink droplets is crucial for the successful inkjet printing of the unclonable security labels. Upon the solvent evaporation, the three-phase contact lines are pinned around the pinning points, where the quantum dots in the ink droplets deposited on, forming physically unclonable flower-like patterns. By utilizing the RGB emission quantum dots, full-color fluorescence security labels can be produced. A convenient and reliable AI-based authentication strategy is developed, allowing for the fast authentication of the covert, unclonable flower-like dot patterns with different sharpness, brightness, rotations, amplifications and the mixture of these parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...