Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(8): 2253-2261, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38483182

RESUMO

We present an efficient approach for the consecutive synthesis of Au-TiO2 nanocomposites with controlled morphologies in a microfluidic chip. The seed-mediated growth method was employed to synthesize Au nanorods as the core, and TiO2 layers of varying thicknesses were deposited on the surface or tip of the Au nanorods. Au-TiO2 nanocomposites with core-shell, dumbbell, and dandelion-like structures can be precisely synthesized in a one-step manner within the microfluidic chip by finely tuning the flow rate of NaHCO3 and the amount of hexadecyl trimethyl ammonium bromide. Furthermore, we have investigated the photocatalytic activity of the synthesized nanocomposites, and it was found that Au NR-TiO2 core-shell nanostructure with a thin TiO2 shell exhibits superior catalytic performance. This work provides an effective and controlled method for the microscale preparation and photocatalytic application of various Au-TiO2 nanocomposite structures.

2.
Nanomicro Lett ; 16(1): 35, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019309

RESUMO

Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation. To get the most energy storage out of the battery at low temperatures, improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases. Herein, this review critically outlines electrolytes' limiting factors, including reduced ionic conductivity, large de-solvation energy, sluggish charge transfer, and slow Li-ion transportation across the electrolyte/electrode interphases, which affect the low-temperature performance of Li-metal batteries. Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding. Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared. Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.

3.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770699

RESUMO

This work reports the synthesis of CuxSny alloy aerogels for electrochemical CO2 reduction catalysts. An in situ reduction and the subsequent freeze-drying process can successfully give CnxSny aerogels with tuneable Sn contents, and such aerogels are composed of three-dimensional architectures made from inter-connected fine nanoparticles with pores as the channels. Density functional theory (DFT) calculations show that the introduction of Sn in Cu aerogels inhibits H2 evolution reaction (HER) activity, while the accelerated CO desorption on the catalyst surface is found at the same time. The porous structure of aerogel also favors exposing more active sites. Counting these together, with the optimized composition of Cu95Sn5 aerogel, the high selectivity of CO can be achieved with a faradaic efficiency of over 90% in a wide potential range (-0.7 V to -1.0 V vs. RHE).

4.
J Colloid Interface Sci ; 606(Pt 2): 1352-1363, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492471

RESUMO

Pseudocapacitive materials based on multi-active components are attractive platforms for future portable energy devices due to their excellent redox processes and low cost. In this study, nanostructured bismuth-iron chalcogenide anchored on multiwalled carbon nanotube framework (Bi-Fe chalcogenide/C)-based electrode materials were fabricated via a simple solvothermal protocol with enhanced electrochemical performances. The obtained Bi-Fe chalcogenide/C nanocomposites combining the improved electroconductivity of carbonic frameworks and high pseudocapacitive properties of Bi/Fe reversible redox processes were employed as negative electrodes for asymmetric supercapacitor (ASC) devices. Systematic investigation of the synthesized materials and capacitive performance indicated that the Bi-Fe-P/C electrode simultaneously achieved an intrinsically appreciable specific capacitance of 532 F g-1 at a current density of 1 A g-1, high-rate capability, and cyclic stability, profiting from the structural and amorphous merits as well as the collaborative effect of multiple components. Besides, we employed an effective strategy to graft Bi-Fe-P film on a self-standing nickel phosphide (Ni-P) to manufacture a cathode with superior capacitive performances. The as-prepared core-shell Bi-Fe-P@Ni-P was used as a high-performance positive electrode and displayed a large specific capacitance of 230.6 mAh g-1 at 1 A g-1. Additionally, we also assembled an ASC system using the core-shell Bi-Fe-P@Ni-P as a positive electrode and amorphous Bi-Fe-P/C as a negative electrode with an expanded operational potential of 1.6 V. The hybrid device delivered a high specific energy density of 81.5 Wh kg-1 at a power density of 890.2 W kg-1 together with good cyclic characteristics (85.6% capacitance retention after 8000 consecutive cycles). The obtained findings offer new insights into the design of advanced energy storage materials at relatively low costs and underscore the proficiency of heterostructured multicomponent electrodes as a practical option for enhancing the electrochemical performance of ASC.

5.
Nanotechnology ; 31(41): 415602, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-32559752

RESUMO

This paper reports a general electrospinning method to prepare various metal phosphide/carbon nanofibers composite for electrochemical hydrogen evolution reaction (HER) catalysts. An earth-abundant organic acid-phytic acid is successfully incorporated into a conventional electrospinning precursor as the phosphorus source, and continuous nanofibers can be obtained through spinning. After heat treatment, metal phosphide/carbon composite nanofibers can be obtained, with fine phosphide nanoparticles well dispersed on the surface of an interconnected carbon backbone network. Such fibrous structures offer fast charge transfer pathways and enlarged active surface area, which are beneficial for electrocatalysts. As a result, enhance HER catalytic activity can be achieved.

6.
Nanotechnology ; 31(47): 475401, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32531765

RESUMO

Fabrication of highly reactive and cost-effective electrode materials is a key to efficient functioning of green energy technologies. Decorating redox-active metal sulfides with conductive dopants is one of the most effective approaches to enhance electric conductivity and consequently boost capacitive properties. Herein, hierarchically hollow Ag2S-NiCo2S4 architectures are designed with an enhanced conductivity by a simple solvothermal approach. With the favorable porous characteristics and composition, the optimized Ag2S-NiCo2S4-5 electrode exhibits higher specific capacitance (276.5 mAh g-1 at a current density of 1 A g-1), a good rate performance (56.3% capacity retention at 50 A g-1), and an improved cycling stability (92.4% retention after 2000 cycles). This finding originates from the enhanced charge transportation ability within the hierarchical structure, abundant electroactive sites, and low contact resistance. In addition, a battery supercapacitor device constructed with the Ag2S-NiCo2S4-5 as a positive electrode displays a maximum energy density of 63.3Wh kg-1 at an energy density of 821.8 W kg-1 with an excellent cycling stability (89.4% capacity retention after 10 000 cycles). Therefore, the present work puts forward new possibility to develop composite electrodes for energy storage battery-supercapacitor.

7.
Chemistry ; 26(10): 2251-2262, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31769082

RESUMO

The design of hierarchical electrodes comprising multiple components with a high electrical conductivity and a large specific surface area has been recognized as a feasible strategy to remarkably boost pseudocapacitors. Herein, we delineate hexagonal sheets-in-cage shaped nickel-manganese sulfides (Ni-Mn-S) with nanosized open spaces for supercapacitor applications to realize faster redox reactions and a lower charge-transfer resistance with a markedly enhanced specific capacitance. The hybrid was facilely prepared through a two-step hydrothermal method. Benefiting from the synergistic effect between Ni and Mn active sites with the improvement of both ionic and electric conductivity, the resulting Ni-Mn-S hybrid displays a high specific capacitance of 1664 F g-1 at a current density of 1 A g-1 and a capacitance of 785 F g-1 is maintained at a current density of 50 A g-1 , revealing an outstanding capacity and rate performance. The asymmetric supercapacitor device assembled with the Ni-Mn-S hexagonal sheets-in-cage as the positive electrode delivers a maximum energy density of 40.4 Wh kg-1 at a power density of 750 W kg-1 . Impressively, the cycling retention of the as-fabricated device after 10 000 cycles at a current density of 10 A g-1 reaches 85.5 %. Thus, this hybrid with superior capacitive performance holds great potential as an effective charge-storage material.

8.
Top Curr Chem (Cham) ; 377(6): 29, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31605243

RESUMO

Sustainable and high performance energy devices such as solar cells, fuel cells, metal-air batteries, as well as alternative energy conversion and storage systems have been considered as promising technologies to meet the ever-growing demands for clean energy. Hydrogen evolution reaction (HER) is a crucial process for cost-effective hydrogen production; however, functional electrocatalysts are potentially desirable to expedite reaction kinetics and supply high energy density. Thus, the development of inexpensive and catalytically active electrocatalysts is one of the most significant and challenging issues in the field of electrochemical energy storage and conversion. Realizing that advanced nanomaterials could engender many advantageous chemical and physical properties over a wide scale, tremendous efforts have been devoted to the preparation of earth-abundant transition metals as electrocatalysts for HER in both acidic and alkaline environments because of their low processing costs, reasonable catalytic activities, and chemical stability. Among all transition metal-based catalysts, nickel compounds are the most widely investigated, and have exhibited pioneering performances in various electrochemical reactions. Heterostructured nickel phosphide (NixPy) based compounds were introduced as promising candidates of a new category, which often display chemical and electronic characteristics that are distinct from those of non-precious metals counterparts, hence providing an opportunity to construct new catalysts with an improved activity and stability. As a result, the library of NixPy catalysts has been enriched very rapidly, with the possibility of fine-tuning their surface adsorption properties through synergistic coupling with nearby elements or dopants as the basis of future practical implementation. The current review distils recent advancements in NixPy compounds/hybrids and their application for HER, with a robust emphasis on breakthroughs in composition refinement. Future perspectives for modulating the HER activity of NixPy compounds/hybrids, and the challenges that need to be overcome before their practical use in sustainable hydrogen production are also discussed.


Assuntos
Hidrogênio/química , Níquel/química , Água/química , Catálise , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Técnicas Eletroquímicas , Nanoestruturas/química , Elementos de Transição/química
9.
Nanotechnology ; 29(21): 215601, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29485405

RESUMO

This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g-1) and large pore volume (0.87 cm3 g-1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g-1 at 1 A g-1), good rate capability (74.3% capacitance retention from 1 to 20 A g-1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

10.
RSC Adv ; 8(15): 8011-8020, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35542027

RESUMO

In our previous work, a citric acid assisted sol-gel method was developed for preparing monolithic metal oxide aerogels. Such method adopted citric acid as the gelator, which replaced the well-studied proton scavenger propylene oxide. In this work, we have further extended this "organic acid assisted" sol-gel method and investigated the gelation mechanism. Four different organic acids (butanedioic acid, l-malic acid, l-aspartic acid and mercaptosuccinic acid) with an identical main chain but different side groups were used as the gelators for preparing monolithic zirconia aerogels. It was found that complex interactions including covalent bond and coordination bond interactions between organic acids and zirconium ions were vital to give a rigid gel network. After supercritical drying, crystalline zirconia aerogels can be obtained with high surface areas over 330 m2 g-1 and large pore volumes over 3.574 cm3 g-1.

11.
RSC Adv ; 8(57): 32979-32984, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35547675

RESUMO

This work reports the synthesis of coaxial carbon@NiMoO4 nanofibers for supercapacitor electrode applications. Thin NiMoO4 nanosheets are uniformly coated on the conductive electrospun carbon nanofibers by a microwave assisted hydrothermal method to form a hierarchical structure, which increases the porosity as well as the conductivity of the electrode. The thickness of the NiMoO4 can be easily adjusted by varying the precursor concentrations. The high specific surface area (over 280 m2 g-1) and conductive carbon nanofiber backbone increase the utilization of the active pseudocapacitive NiMoO4 phase, resulting a high specific capacitance of 1840 F g-1.

12.
RSC Adv ; 8(48): 27574-27579, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35547727

RESUMO

This work reported Co9S8 nanoparticle-decorated carbon nanofibers (CNF) as a supercapacitor electrode. By using a mild ion-exchange method, the cobalt oxide-based precursor nanoparticles were transformed to Co9S8 nanoparticles in a microwave hydrothermal process, and these nanoparticles were decorated onto a carbon nanofiber backbone. The composition of the nanofibers can be readily tuned by varying the Co acetate content in the precursor. The porous carbon nanofibers offered a fast electron transfer pathway while the well dispersed Co9S8 nanoparticles acted as the redox center for energy storage. As a result, high specific capacitance of 718 F g-1 at 1 A g-1 can be achieved with optimized Co9S8 loading. The assembled asymmetric supercapacitor with Co9S8/CNF as the cathode showed a high energy density of 23.8 W h kg-1 at a power density of 0.75 kW kg-1 and good cycling stability (16.9% loss over 10 000 cycles).

13.
Chem Asian J ; 11(12): 1842-8, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27123892

RESUMO

Two new quaternary thioarsenates(III), SrAg4 As2 S6 ⋅2 H2 O (1) and BaAgAsS3 (2), have been prepared through a hydrazine-hydrothermal method at low temperature. Compound 1 possesses a two-dimensional (2D) layer network, while compound 2 features a one-dimensional (1D) column structure. The detailed structure analysis indicates that Sr(2+) and Ba(2+) cations have different directing effects on the structures of thioarsenates(III). Both experimental and theoretical studies demonstrate that compounds 1 and 2 are narrow-gap semiconductors. Our success in synthesizing these two quaternary thioarsenates(III) proves that the hydrazine-hydrothermal technique is a powerful yet facile synthetic method for exploring new complex chalcogenides with diverse crystal structures and interesting physical properties.

14.
Adv Funct Mater ; 26(37): 6760-6765, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28603477

RESUMO

Harvesting mechanical energy from biological systems possesses great potential for in vivo powering implantable electronic devices. In this paper, a development of flexible piezoelectric nanogenerator (NG) is reported based on mesoporous poly(vinylidene fluoride) (PVDF) films. Monolithic mesoporous PVDF is fabricated by a template-free sol-gel-based approach at room temperature. By filling the pores of PVDF network with poly(dimethylsiloxane) (PDMS) elastomer, the composite's modulus is effectively tuned over a wide range down to the same level of biological systems. A close match of the modulus between NG and the surrounding biological component is critical to achieve practical integration. Upon deformation, the composite NG exhibits appreciable piezoelectric output that is comparable to or higher than other PVDF-based NGs. An artificial artery system is fabricated using PDMS with the composite NG integrated inside. Effective energy harvesting from liquid pressure fluctuation (simulating blood pressure fluctuation) is successfully demonstrated. The simple and effective approach for fabricating mesoporous PVDF with tunable mechanical properties provides a promising route toward the development of self-powered implantable devices.

15.
Inorg Chem ; 54(18): 8931-6, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26331785

RESUMO

The two new quaternary thioantimonates(III) BaAgSbS3 (1) and BaAgSbS3·H2O (2) have been synthesized through a hydrazine-hydrothermal method at low temperature. Compound 1 possesses a two-dimensional (2D) layer structure, while compound 2 features a three-dimensional (3D) channel framework. The optical band gaps of 1 and 2 are approximately 2.2 and 2.4 eV, respectively. Our results clearly indicated that the hydrazine-hydrothermal method could offer exciting opportunities for exploring novel multinary chalcogenides with diverse crystal structures and interesting physical properties.

16.
Chem Asian J ; 10(12): 2604-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26381694

RESUMO

Two novel porous three-dimensional (3D) quaternary thioantimonates(III) ACuSb2S4 (A = Rb, Cs) were successfully synthesized by employing the neutral surfactant PEG-400 (PEG = polyethyleneglycol) as reaction media, these are significantly different from the known quaternary A-Cu-Sb-S thioantimonates(III) with two-dimensional (2D) crystal structures. This is the first time that crystalline quaternary chalcogenides have been prepared in surfactant media. Both experimental and theoretical studies confirm they are semiconductors with narrow band gaps. Our results demonstrated that the surfactant-thermal strategy could offer a new opportunity to explore novel chalcogenides with diverse crystal structures and interesting physicochemical properties.

17.
J Am Chem Soc ; 135(28): 10286-9, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23808935

RESUMO

Molybdenum disulfide (MoS2) is a promising candidate for solar hydrogen generation but it alone has negligible photocatalytic activity. In this work, 5-20 nm sized p-type MoS2 nanoplatelets are deposited on the n-type nitrogen-doped reduced graphene oxide (n-rGO) nanosheets to form multiple nanoscale p-n junctions in each rGO nanosheet. The p-MoS2/n-rGO heterostructure shows significant photocatalytic activity toward the hydrogen evolution reaction (HER) in the wavelength range from the ultraviolet light through the near-infrared light. The photoelectrochemical measurement shows that the p-MoS2/n-rGO junction greatly enhances the charge generation and suppresses the charge recombination, which is responsible for enhancement of solar hydrogen generation. The p-MoS2/n-rGO is an earth-abundant and environmentally benign photocatalyst for solar hydrogen generation.


Assuntos
Dissulfetos/química , Grafite/química , Hidrogênio/química , Molibdênio/química , Nanoestruturas/química , Nitrogênio/química , Óxidos/química , Fontes de Energia Elétrica , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
18.
Nanoscale ; 5(1): 72-88, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23151936

RESUMO

This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.


Assuntos
Carbono/química , Capacitância Elétrica , Eletrodos , Eletrônica/instrumentação , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento
19.
J Am Chem Soc ; 134(36): 15033-41, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22891916

RESUMO

Plasmonic metal nanostructures have been incorporated into semiconductors to enhance the solar-light harvesting and the energy-conversion efficiency. So far the mechanism of energy transfer from the plasmonic metal to semiconductors remains unclear. Herein the underlying plasmonic energy-transfer mechanism is unambiguously determined in Au@SiO(2)@Cu(2)O sandwich nanostructures by transient-absorption and photocatalysis action spectrum measurement. The gold core converts the energy of incident photons into localized surface plasmon resonance oscillations and transfers the plasmonic energy to the Cu(2)O semiconductor shell via resonant energy transfer (RET). RET generates electron-hole pairs in the semiconductor by the dipole-dipole interaction between the plasmonic metal (donor) and semiconductor (acceptor), which greatly enhances the visible-light photocatalytic activity as compared to the semiconductor alone. RET from a plasmonic metal to a semiconductor is a viable and efficient mechanism that can be used to guide the design of photocatalysts, photovoltaics, and other optoelectronic devices.

20.
Nanotechnology ; 23(30): 305501, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22751138

RESUMO

Lanthanum strontium manganite (La(0.8)Sr(0.2)MnO(3), LSM) nanofibers have been synthesized by the electrospinning method. The electrospun nanofibers are intact without morphological and structural changes after annealing at 1050 °C. The LSM nanofibers are employed as the sensing electrode of an electrochemical sensor with yttria-stabilized zirconia (YSZ) electrolyte for carbon monoxide detection at high temperatures over 500 °C. The electrospun nanofibers form a porous network electrode, which provides a continuous pathway for charge transport. In addition, the nanofibers possess a higher specific surface area than conventional micron-sized powders. As a result, the nanofiber electrode exhibits a higher electromotive force and better electro-catalytic activity toward CO oxidation. Therefore, the sensor with the nanofiber electrode shows a higher sensitivity, lower limit of detection and faster response to CO than a sensor with a powder electrode.


Assuntos
Monóxido de Carbono/análise , Técnicas Eletroquímicas/métodos , Lantânio/química , Compostos de Manganês/química , Nanofibras/química , Estrôncio/química , Eletrodos , Temperatura Alta , Limite de Detecção , Nanotecnologia , Tamanho da Partícula , Propriedades de Superfície , Ítrio , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...