Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888932

RESUMO

This article presents a general-purpose model that enables efficient and accurate calculation of third-order nonlinear signals in surface acoustic wave (SAW) devices. This model is based on piezoelectric constitutive equations combined with perturbation theory, which can be analyzed by full finite element method (FEM). For validation, third-order harmonic (H3) responses and intermodulation distortions (IMD3) in SAW resonators are simulated, and their calculation results fit well to experimental data in the literature. Then, the generation mechanisms of the third-order nonlinearity in SAW resonators are discussed. The dominant generation mechanisms for different nonlinear signals and the relation between electrode materials and H3 peak magnitude are revealed, which provides an important guideline for further nonlinear suppression.

2.
Micromachines (Basel) ; 12(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34442559

RESUMO

Demagnetization effect plays an important role in the magnetic core design of the orthogonal fluxgate sensor. In this paper, a meander-core orthogonal fluxgate sensor based on amorphous ribbon is described. The demagnetization model of meander-core structures is established, and the average demagnetization factor can be evaluated by finite element modeling. Simulation and experimental analyses were performed to study the effects of demagnetization on the sensitivity and linear range of orthogonal fluxgate sensors in the fundamental mode by varying the number of strips, the line width, and the spacing of the meander-cores. The results were compared and revealed a very close match. The results show that the demagnetization factor increases with an increase in the number of strips and the line width, which leads to an increase in the linear range of the sensors. The sensitivity can be improved by increasing the number of strips appropriately, however, it is reduced when the line width increases. Smaller spacing results in a larger demagnetization factor due to the magnetic interactions between adjacent strips, which reduces the sensitivity of the sensor. The results obtained here from simulations and experiments are useful for designing magnetic sensors with similar structures.

3.
Sensors (Basel) ; 19(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756902

RESUMO

In this paper, the performance of orthogonal fluxgate sensors with meander-shaped cores is studied in fundamental mode. The meander-shaped cores are made by micro-patterning technology based on a Co-based amorphous ribbon. The main advantage of this structure is that the linear operating range of the sensor can be adjusted simply by changing the number of strips, without affecting the excitation mechanism. Experiments show that a linear range of 560 µT is obtained by a meander-shaped core sensor with 12 strips. The changes in the number of strips can also increase sensitivity and reduce noise of the sensor. We can achieve a sensitivity of 600 V/T and a noise level of 0.64 nT/√Hz at 1 Hz for a meander-shaped core sensor with eight strips. Compared with the performance of the sensors built using a single strip core having the same equivalent cross-sectional area, the use of meander-shaped core can provide a higher sensitivity and linearity, and a lower noise level. We also compare the performance of an eight-strip meander-shaped core orthogonal fluxgate operated in the fundamental and second-harmonic modes. Similar sensitivity for the two modes can be obtained by adjusting the excitation current. In this case, we find that the noise of sensor operating in fundamental mode is about five times lower than that of the sensor operating in second-harmonic mode. This can be interpreted as the suppression of Barkhausen noise by unipolar bias in the fundamental mode.

4.
Mikrochim Acta ; 186(4): 252, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30903388

RESUMO

The authors describe an integrated microfluidic chip for immunodetection of the prostate specific antigen (PSA) by using giant magnetoimpedance (GMI) sensor. This chip contains an immunoreaction platform and a biomarker detection system. The immunoreaction platform contains an incubation chamber and a reactive chamber to implement immunological reaction in microfluidics. The system can detect PSA rapidly with ultra-high sensitivity. Both are fabricated by MEMS technology. Immunomagnetic beads (If PSA binds to its antibody (that is labeled with immunomagnetic beads; IMBs) it will be trapped on the surface of self-assembled film. Trapped IMBs generate a stray magnetic field under the magnetization of the external applied magnetic field and can be detected by the GMI sensor. The chip can detect PSA with a detection limit as low as 0.1 ng ∙ mL-1 and works in the 0.1 ng ∙ mL-1 to 20 ng ∙ mL-1 concentration range. Compared to established GMI biosensors, the magnetic microfluidic chip reduces assay time, and lends itself to fast detection. It also avoids complex handling steps, enhances reaction efficiency and decreases experimental errors. Graphical abstract An integrated magnetic microfluidic chip which contains immunoreaction platform and biomarker detection system was designed and microfabricated by micro-electromechanical systems (MEMS) technology to detect prostate specific antigen (PSA) rapidly, and has promise in Point-of-care (PoC) diagnostic applications.


Assuntos
Imunoensaio/instrumentação , Separação Imunomagnética/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Antígeno Prostático Específico/análise , Animais , Anticorpos/imunologia , Biomarcadores/análise , Desenho de Equipamento , Humanos , Imunoensaio/métodos , Separação Imunomagnética/métodos , Limite de Detecção , Camundongos , Técnicas Analíticas Microfluídicas/métodos , Antígeno Prostático Específico/imunologia
5.
Sci Rep ; 8(1): 12817, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30127524

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

6.
PLoS One ; 13(3): e0194631, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29601593

RESUMO

A sensitive and innovative assay system based on a micro-MEMS-fluxgate sensor and immunomagnetic beads-labels was developed for the rapid analysis of C-reactive proteins (CRP). The fluxgate sensor presented in this study was fabricated through standard micro-electro-mechanical system technology. A multi-loop magnetic core made of Fe-based amorphous ribbon was employed as the sensing element, and 3-D solenoid copper coils were used to control the sensing core. Antibody-conjugated immunomagnetic microbeads were strategically utilized as signal tags to label the CRP via the specific conjugation of CRP to polyclonal CRP antibodies. Separate Au film substrates were applied as immunoplatforms to immobilize CRP-beads labels through classical sandwich assays. Detection and quantification of the CRP at different concentrations were implemented by detecting the stray field of CRP labeled magnetic beads using the newly-developed micro-fluxgate sensor. The resulting system exhibited the required sensitivity, stability, reproducibility, and selectivity. A detection limit as low as 0.002 µg/mL CRP with a linearity range from 0.002 µg/mL to 10 µg/mL was achieved, and this suggested that the proposed biosystem possesses high sensitivity. In addition to the extremely low detection limit, the proposed method can be easily manipulated and possesses a quick response time. The response time of our sensor was less than 5 s, and the entire detection period for CRP analysis can be completed in less than 30 min using the current method. Given the detection performance and other advantages such as miniaturization, excellent stability and specificity, the proposed biosensor can be considered as a potential candidate for the rapid analysis of CRP, especially for point-of-care platforms.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteína C-Reativa/análise , Limite de Detecção , Sistemas Microeletromecânicos , Animais , Bovinos , Imãs , Microesferas , Sistemas Automatizados de Assistência Junto ao Leito , Fatores de Tempo
7.
Sci Rep ; 7(1): 12967, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021533

RESUMO

We report an innovative integrated microfluidic platform based on micro-fluxgate and micro-coils for trapping and detecting magnetic beads. A micro-spiral coil fabricated by microfabrication technology is used to trap the magnetic beads, and the micro-fluxgate is employed to detect the weak magnetic field induced by the trapped magnetic beads. The fabrication process of the magnetic bead trapping system using a micro-coil is highly compatible with that of the micro-fluxgate sensor, making fabrication of this integrated microfluidic system convenient and efficient. It is observed that the magnetic bead trapping ratio increases as the number of magnetic beads is increased with a flow rate of 5 to 16.5 µL·min-1. Samples spiked with different concentrations of magnetic beads can be distinguished clearly using the micro-fluxgate sensor in this microfluidic system. In this study, the results demonstrate that the microfluidic system traps and detects magnetic beads efficiently and is a promising candidate for biomarker capture and detection.


Assuntos
Magnetismo , Técnicas Analíticas Microfluídicas/métodos , Microesferas , Processamento de Sinais Assistido por Computador , Fatores de Tempo
8.
Sensors (Basel) ; 16(10)2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27763498

RESUMO

The disturbing effect of the stray magnetic fields of Fe-based amorphous ribbons on the giant magnetoimpedance (GMI) sensor has been investigated systematically in this paper. Two simple methods were used for examining the disturbing effect of the stray magnetic fields of ribbons on the GMI sensor. In order to study the influence of the stray magnetic fields on the GMI effect, the square-shaped amorphous ribbons were tested in front, at the back, on the left and on the top of a meander-line GMI sensor made up of soft ferromagnetic films, respectively. Experimental results show that the presence of ribbons in front or at the back of GMI sensor shifts the GMI curve to a lower external magnetic field. On the contrary, the presence of ribbons on the left or on the top of the GMI sensor shifts the GMI curve to a higher external magnetic field, which is related to the coupling effect of the external magnetic field and the stray magnetic fields. The influence of the area and angle of ribbons on GMI was also studied in this work. The GMI sensor exhibits high linearity for detection of the stray magnetic fields, which has made it feasible to construct a sensitive magnetometer for detecting the typical stray magnetic fields of general soft ferromagnetic materials.

9.
Biomed Microdevices ; 18(4): 60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27379844

RESUMO

This paper presents a contactless detection method for detecting prostate specific antigen with a giant magnetoresistance sensor. In contactless detection case, the prostate specific antigen sample preparation was separated from the sensor that prevented the sensor from being immersed in chemical solvents, and made the sensor implementing in immediately reuse without wash. Experimental results showed that applied an external magnetic field in a range of 50 Oe to 90 Oe, Dynabeads with a concentration as low as 0.1 µg/mL can be detected by this system and could give an approximate quantitation to the logarithmic of Dynabeads concentration. Sandwich immunoassay was employed for preparing PSA samples. The PSA capture was implemented on a gold film modified with a self-assembled monolayer and using biotinylated secondary antibody against PSA and streptavidinylated Dynabeads. With DC magnetic field in the range of 50 to 90 Oe, PSA can be detected with a detection limit as low as 0.1 ng/mL. Samples spiked with different concentrations of PSA can be distinguished clearly. Due to the contactless detection method, the detection system exhibited advantages such as convenient manipulation, reusable, inexpensive, small weight. So, this detection method was a promising candidate in biomarker detection, especially in point of care detection.


Assuntos
Técnicas Biossensoriais , Magnetismo/instrumentação , Antígeno Prostático Específico/análise , Anticorpos/química , Biomarcadores/análise , Humanos , Imunoensaio , Limite de Detecção , Masculino , Microtecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...