Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38079510

RESUMO

Trichoderma can promote plant growth under saline stress, but the mechanisms remain to be revealed. In this study, we investigate photosynthetic gas exchange, photosystem II (PSII) performance, nitrogen absorption and accumulation in a medicinal plant wolfberry (Lycium chinense) in saline soil supplemented with Trichoderma biofertilizer (TF). Larger nitrogen and biomass accumulation were found in plants supplemented with TF than with organic fertilizer (OF), suggesting that Trichoderma asperellum promoted plant growth and nitrogen accumulation under saline stress. T. asperellum strengthened root nitrogen (N) absorption according to greater increased root NH4+ and NO3- influxes under supplement with TF than OF, while nitrogen assimilative enzymes such as nitrate reductase, nitrite reductase and glutamine synthetase activities in roots and leaves were also stimulated. Thus, the elevated N accumulation derived from the induction of T. asperellum on nitrogen absorption and assimilation. Greater increased photosynthetic rate (Pn) and photosynthetic N-use efficiency under supplement with TF than OF illustrated that T. asperellum enhanced photosynthetic capacity and N utilization under saline stress. Although increased leaf stomatal conductance contributed to carbon (C) isotope fractionation under TF supplement, leaf 13C abundance was significantly increased by supplement with TF rather than OF, indicating that T. asperellum raised CO2 assimilation to a greater extent, reducing C isotope preference. Trichoderma asperellum optimized electron transport at PSII donor and acceptor sides under saline stress because of lower K and J steps in chlorophyll fluorescence transients under supplement with TF than OF. The amount of PSII active reaction centers was also increased by T. asperellum. Thus, PSII performance was upgraded, consistent with greater heightened delayed chlorophyll fluorescence transients and I1 peak under supplement with TF than OF. In summary, TF acted to increase N nutrient acquisition and photosynthetic C fixation resulting in enhanced wolfberry growth under saline soil stress.


Assuntos
Hypocreales , Lycium , Lycium/metabolismo , Clorofila , Nitrogênio , Solo , Fotossíntese , Folhas de Planta/metabolismo , Complexo de Proteína do Fotossistema II , Isótopos
2.
Front Plant Sci ; 14: 1225028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877079

RESUMO

A two-year field trial was conducted to investigate the effects of partial substitution of chemical fertilizer (CF) by Trichoderma biofertilizer (TF) on nitrogen (N) use efficiency and associated mechanisms in wolfberry (Lycium chinense) in coastal saline land. As with plant biomass and fruit yield, apparent N use efficiency and plant N accumulation were also higher with TF plus 75% CF than 100% CF, indicating that TF substitution promoted plant growth and N uptake. As a reason, TF substitution stabilized soil N supply by mitigating steep deceases in soil NH4 +-N and NO3 -N concentrations in the second half of growing seasons. TF substitution also increased carbon (C) fixation according to higher photosynthetic rate (Pn) and stable 13C abundance with TF plus 75% CF than 100% CF. Importantly, leaf N accumulation significantly and positively related with Pn, biomass, and fruit yield, and structural equation modeling also confirmed the importance of the causal relation of N accumulation coupled with C fixation for biomass and yield formation. Consequently, physiological and agronomical N use efficiencies were significantly higher with TF plus 75% CF than 100% CF. Overall, partial substitution of CF by TF improved N use efficiency in wolfberry in coastal saline land by stabilizing soil N supply and coupling N accumulation with C fixation.

3.
Plant Physiol Biochem ; 195: 266-274, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652848

RESUMO

Polyploid plants are usually salt tolerant, but the underlying mechanisms remain fragmental. This study aimed to dissect salt resistance of tetraploid honeysuckle (Lonicera japonica Thunb.) from ion balance, osmotic adjustment and antioxidant defense by contrasting with its autodiploid through pot experiments. Less salt-induced reduction in leaf and root biomass confirmed higher tolerance in tetraploid honeysuckle, and moreover, its greater stability of photosynthetic apparatus was verified by mild influence on delayed chlorophyll fluorescence transients. Compared with the diploid, greater root Na+ exclusion helped alleviate salt-induced decrease in leaf K+/Na+ for maintaining ion balance in tetraploid honeysuckle, and relied on Na+/H+ antiporter activity, because their difference of root Na+ exclusion disappeared after applying a specific inhibitor of Na+/H+ antiporter. Lower reduction in leaf relative water content suggested higher tolerance to osmotic pressure in tetraploid honeysuckle under salt stress, which hardly resulted from osmotic adjustment given the similar decrease extent of leaf osmotic potential with that in the diploid. In contrast to significant elevated leaf lipid peroxidation and superoxide dismutase and ascorbate peroxidase activities in the diploid, no obvious changes in them suggested that tetraploid honeysuckle never suffered salt-induced oxidative stress. According to more accumulated leaf chlorogenic acid and phenolics and greater elevated leaf phenylalanine ammonia-lyase activity and transcription, leaf phenolic synthesis was enhanced greater in tetraploid honeysuckle upon salt stress, which might serve to prevent oxidative threat by consuming reducing power. In conclusion, polyploidy enhanced salt tolerance in honeysuckle by maintaining ion homeostasis and water balance and preventing oxidative stress.


Assuntos
Antioxidantes , Lonicera , Tolerância ao Sal , Tetraploidia , Homeostase , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...