Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 600
Filtrar
1.
World J Psychiatry ; 14(6): 838-847, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38984342

RESUMO

BACKGROUND: Older adults are at high risk of femoral neck fractures (FNFs). Elderly patients face and adapt to significant psychological burdens, resulting in different degrees of psychological stress response. Total hip replacement is the preferred treatment for FNF in elderly patients; however, some patients have poor postoperative prognoses, and the underlying mechanism is unknown. We speculated that the postoperative prognosis of elderly patients with FNF may be related to preoperative psychological stress. AIM: To explore the relationship between preoperative psychological stress and the short-term prognosis of elderly patients with FNF. METHODS: In this retrospective analysis, the baseline data, preoperative 90-item Symptom Checklist score, and Harris score within 6 months of surgery of 120 elderly patients with FNF who underwent total hip arthroplasty were collected. We analyzed the indicators of poor short-term postoperative prognosis and the ability of the indicators to predict poor prognosis and compared the correlation between the indicators and the Harris score. RESULTS: Anxiety, depression, garden classification of FNF, cause of fracture, FNF reduction quality, and length of hospital stay were independent influencing factors for poor short-term postoperative prognoses in elderly patients with FNF (P < 0.05). The areas under the curve for anxiety, depression, and length of hospital stay were 0.742, 0.854, and 0.749, respectively. The sensitivities of anxiety, depression, garden classification of FNF, and prediction of the cause of fracture were 0.857, 0.786, 0.821, and 0.821, respectively. The specificities of depression, FNF quality reduction, and length of hospital stay were the highest at 0.880, 0.783, and 0.761, respectively. Anxiety, depression, and somatization scores correlated moderately with Harris scores (r = -0.523, -0.625, and -0.554; all P < 0.001). CONCLUSION: Preoperative anxiety, depression, and somatization are correlated with poor short-term prognosis in elderly patients with FNF and warrant consideration.

2.
Expert Rev Anti Infect Ther ; : 1-12, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38975666

RESUMO

BACKGROUND: The potential of ursodeoxycholic acid (UDCA) in inhibiting angiotensin-converting enzyme 2 was demonstrated. However, conflicting evidence emerged regarding the association between UDCA and COVID-19 outcomes, prompting the need for a comprehensive investigation. RESEARCH DESIGN AND METHODS: Patients diagnosed with COVID-19 infection were retrospectively analyzed and divided into two groups: the UDCA-treated group and the control group. Kaplan-Meier recovery analysis and Cox proportional hazards models were used to evaluate the recovery time and hazard ratios. Additionally, study-level pooled analyses for multiple clinical outcomes were performed. RESULTS: In the 115-patient cohort, UDCA treatment was significantly associated with a reduced recovery time. The subgroup analysis suggests that the 300 mg subgroup had a significant (adjusted hazard ratio: 1.63 [95% CI, 1.01 to 2.60]) benefit with a shorter duration of fever. The results of pooled analyses also show that UDCA treatment can significantly reduce the incidence of severe/critical diseases in COVID-19 (adjusted odds ratio: 0.68 [95% CI, 0.50 to 0.94]). CONCLUSIONS: UDCA treatment notably improves the recovery time following an Omicron strain infection without observed safety concerns. These promising results advocate for UDCA as a viable treatment for COVID-19, paving the way for further large-scale and prospective research to explore the full potential of UDCA.

3.
Chem Commun (Camb) ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957034

RESUMO

A mild and efficient electrochemical method for radical addition, cyclization, and migration reaction was described in this work. A difluoromethyl radical was produced by anodizing CF2HSO2Na. The resulting product was then added to olefin, underwent Smiles cyclization, and migrated to form ß-difluoromethamide compounds after the release of SO2. The process was free from metals and catalysts, gram-grade, and resistant to a variety of electron-rich substrates.

5.
Nanomaterials (Basel) ; 14(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38869597

RESUMO

Two-dimensional (2D) materials promise advances in electronic devices beyond Moore's scaling law through extended functionality, such as non-monotonic dependence of device parameters on input parameters. However, the robustness and performance of effects like negative differential resistance (NDR) and anti-ambipolar behavior have been limited in scale and robustness by relying on atomic defects and complex heterojunctions. In this paper, we introduce a novel device concept that utilizes the quantum capacitance of junctions between 2D materials and molecular layers. We realized a variable capacitance 2D molecular junction (vc2Dmj) diode through the scalable integration of graphene and single layers of stearic acid. The vc2Dmj exhibits NDR with a substantial peak-to-valley ratio even at room temperature and an active negative resistance region. The origin of this unique behavior was identified through thermoelectric measurements and ab initio calculations to be a hybridization effect between graphene and the molecular layer. The enhancement of device parameters through morphology optimization highlights the potential of our approach toward new functionalities that advance the landscape of future electronics.

6.
Front Bioeng Biotechnol ; 12: 1355617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846802

RESUMO

Gliding is a crucial phase in swimming, yet the understanding of fluid force and flow fields during gliding remains incomplete. This study analyzes gliding through Computational Fluid Dynamics simulations. Specifically, a numerical model based on the Smoothed Particle Hydrodynamics (SPH) method for flow-object interactions is established. Fluid motion is governed by continuity, Navier-Stokes, state, and displacement equations. Modified dynamic boundary particles are used to implement solid boundaries, and steady and uniform flows are generated with inflow and outflow conditions. The reliability of the SPH model is validated by replicating a documented laboratory experiment on a circular cylinder advancing steadily beneath a free surface. Reasonable agreement is observed between the numerical and experimental drag force and lift force. After the validation, the SPH model is employed to analyze the passive drag, vertical force, and pitching moment acting on a streamlined gliding 2D swimmer model as well as the surrounding velocity and vorticity fields, spanning gliding velocities from 1 m/s to 2.5 m/s, submergence depths from 0.2 m to 1 m, and attack angles from -10° to 10°. The results indicate that with the increasing gliding velocity, passive drag and pitching moment increase whereas vertical force decreases. The wake flow and free surface demonstrate signs of instability. Conversely, as the submergence depth increases, there is a decrease in passive drag and pitching moment, accompanied by an increase in vertical force. The undulation of the free surface and its interference in flow fields diminish. With the increase in the attack angle, passive drag and vertical force decrease whereas pitching moment increases, along with the alteration in wake direction and the increasing complexity of the free surface. These outcomes offer valuable insights into gliding dynamics, furnishing swimmers with a scientific basis for selecting appropriate submergence depth and attack angle.

7.
World J Gastrointest Oncol ; 16(5): 1995-2005, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764807

RESUMO

BACKGROUND: Limited knowledge exists regarding the casual associations linking blood metabolites and the risk of developing colorectal cancer. AIM: To investigate causal associations between blood metabolites and colon cancer. METHODS: The study utilized a two-sample Mendelian randomization (MR) analysis to investigate the causal impact of 486 blood metabolites on colorectal cancer. The primary method of analysis used was the inverse variance weighted model. To further validate the results several sensitivity analyses were performed, including Cochran's Q test, MR-Egger intercept test, and MR robust adjusted profile score. These additional analyses were conducted to ensure the reliability and robustness of the findings. RESULTS: After rigorous selection for genetic variation, 486 blood metabolites were included in the MR analysis. We found Mannose [odds ratio (OR) = 2.09 (1.10-3.97), P = 0.024], N-acetylglycine [OR = 3.14 (1.78-5.53), P = 7.54 × 10-8], X-11593-O-methylascorbate [OR = 1.68 (1.04-2.72), P = 0.034], 1-arachidonoylglycerophosphocholine [OR = 4.23 (2.51-7.12), P = 6.35 × 10-8] and 1-arachidonoylglycerophosphoethanolamine 4 [OR = 3.99 (1.17-13.54), P = 0.027] were positively causally associated with colorectal cancer, and we also found a negative causal relationship between Tyrosine [OR = 0.08 (0.01-0.63), P = 0.014], Urate [OR = 0.25 (0.10-0.62), P = 0.003], N-acetylglycine [0.73 (0.54-0.98), P = 0.033], X-12092 [OR = 0.89 (0.81-0.99), P = 0.028], Succinylcarnitine [OR = 0.48 (0.27-0.84), P = 0.09] with colorectal cancer. A series of sensitivity analyses were performed to confirm the rigidity of the results. CONCLUSION: This study showed a causal relationship between 10 blood metabolites and colorectal cancer, of which 5 blood metabolites were found to be causal for the development of colorectal cancer and were confirmed as risk factors. The other five blood metabolites are protective factors.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38662912

RESUMO

The conventional von Neumann architecture has proven to be inadequate in keeping up with the rapid progress in artificial intelligence. Memristors have become the favored devices for simulating synaptic behavior and enabling neuromorphic computations to address challenges. An artificial synapse utilizing the perovskite structure PbHfO3 (PHO) has been created to tackle these concerns. By employing the sol-gel technique, a ferroelectric film composed of Au/PHO/FTO was created on FTO/glass for the purpose of this endeavor. The artificial synapse is composed of Au/PHO/FTO and exhibits learning and memory characteristics that are similar to those observed in biological neurons. The recognition accuracy for both MNIST and Fashion-MNIST data sets saw an increase, reaching 92.93% and 76.75%, respectively. This enhancement resulted from employing a convolutional neural network architecture and implementing an improved stochastic adaptive algorithm. The presented findings showcase a viable approach to achieve neuromorphic computation by employing artificial synapses fabricated with PHO.

9.
J Robot Surg ; 18(1): 167, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592362

RESUMO

This meta-analysis was conducted to evaluate and contrast the effectiveness of robotic-assisted and laparoscopic colorectal surgery in the treatment of obese patients. In February 2024, we carried out an exhaustive search of key global databases including PubMed, Embase, and Google Scholar, limiting our focus to studies published in English and Chinese. We excluded reviews, protocols lacking published results, articles derived solely from conference abstracts, and studies not relevant to our research objectives. To analyze categorical variables, we utilized the Cochran-Mantel-Haenszel method along with random-effects models, calculating inverse variances and presenting the outcomes as odds ratios (ORs) along with their 95% confidence intervals (CIs). Statistical significance was determined when p values were less than 0.05. In our final meta-analysis, we included eight cohort studies, encompassing a total of 5,004 patients. When comparing the robotic surgery group to the laparoscopic group, the findings revealed that the robotic group experienced a longer operative time (weighted mean difference (WMD) = 37.53 min, 95% (CI) 15.58-59.47; p = 0.0008), a shorter hospital stay (WMD = -0.68 days, 95% CI -1.25 to -0.10; p = 0.02), and reduced blood loss (WMD = -49.23 mL, 95% CI -64.31 to -34.14; p < 0.00001). No significant differences were observed between the two groups regarding overall complications, conversion rates, surgical site infections, readmission rates, lymph node yield, anastomotic leakage, and intestinal obstruction. The results of our study indicate that robot-assisted colorectal surgery offers benefits for obese patients by shortening the length of hospital stay and minimizing blood loss when compared to laparoscopic surgery. Nonetheless, it is associated with longer operation times and shows no significant difference in terms of overall complications, conversion rates, rehospitalization rates, and other similar metrics.


Assuntos
Cirurgia Colorretal , Laparoscopia , Procedimentos Cirúrgicos Robóticos , Humanos , Obesidade/complicações , Procedimentos Cirúrgicos Robóticos/métodos
10.
Bioresour Bioprocess ; 11(1): 17, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38647810

RESUMO

Cell immobilization plays an important role in biocatalysis for high-value products. It is necessary to maintain the viability of immobilized cells for bioconversion using viable cells as biocatalysts. In this study, a novel polyester nonwoven chemostat was designed for cell immobilization to investigate biofilm formation and the dynamic balance between adsorption and desorption of cells on polyester nonwoven. The polyester nonwoven was suitable for cell immobilization, and the cell numbers on the polyester nonwoven can reach 6.5 ± 0.38 log CFU/mL. After adding the polyester nonwoven to the chemostat, the fluctuation phenomenon of free bacterial cells occurred. The reason for this phenomenon was the balance between adsorption and desorption of bacterial cells on the polyester nonwoven. Bacterial cells could adhere to the surface of polyester nonwoven via secreting extracellular polymeric substances (EPS) to form biofilms. As the maturation of biofilms, some dead cells inside the biofilms can cause the detachment of biofilms. This process of continuous adsorption and desorption of cells can ensure that the polyester nonwoven chemostat has lasting biological activity.

11.
Biotechnol Biofuels Bioprod ; 17(1): 38, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454489

RESUMO

BACKGROUND: Glycerol, as a by-product, mainly derives from the conversion of many crops to biodiesel, ethanol, and fatty ester. Its bioconversion to 1,3-propanediol (1,3-PDO) is an environmentally friendly method. Continuous fermentation has many striking merits over fed-batch and batch fermentation, such as high product concentration with easy feeding operation, long-term high productivity without frequent seed culture, and energy-intensive sterilization. However, it is usually difficult to harvest high product concentrations. RESULTS: In this study, a three-stage continuous fermentation was firstly designed to produce 1,3-PDO from crude glycerol by Clostridium butyricum, in which the first stage fermentation was responsible for providing the excellent cells in a robust growth state, the second stage focused on promoting 1,3-PDO production, and the third stage aimed to further boost the 1,3-PDO concentration and reduce the residual glycerol concentration as much as possible. Through the three-stage continuous fermentation, 80.05 g/L 1,3-PDO as the maximum concentration was produced while maintaining residual glycerol of 5.87 g/L, achieving a yield of 0.48 g/g and a productivity of 3.67 g/(L·h). Based on the 14 sets of experimental data from the first stage, a kinetic model was developed to describe the intricate relationships among the concentrations of 1,3-PDO, substrate, biomass, and butyrate. Subsequently, this kinetic model was used to optimize and predict the highest 1,3-PDO productivity of 11.26 g/(L·h) in the first stage fermentation, while the glycerol feeding concentration and dilution rate were determined to be 92 g/L and 0.341 h-1, separately. Additionally, to achieve a target 1,3-PDO production of 80 g/L without the third stage fermentation, the predicted minimum volume ratio of the second fermenter to the first one was 11.9. The kinetics-based two-stage continuous fermentation was experimentally verified well with the predicted results. CONCLUSION: A novel three-stage continuous fermentation and a kinetic model were reported. Then a simpler two-stage continuous fermentation was developed based on the optimization of the kinetic model. This kinetics-based development of two-stage continuous fermentation could achieve high-level production of 1,3-PDO. Meanwhile, it provides a reference for other bio-chemicals production by applying kinetics to optimize multi-stage continuous fermentation.

12.
Food Chem ; 446: 138861, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430767

RESUMO

A ternary complex composed of soybean protein isolated (SPI), tannic acid (TA) and magnesium ion (M) was established to enhance the capability of protein carriers for TA delivery. SPI was firstly covalently bind with TA (TA-SPI) and then M was employed to form the ternary complex (M-TA-SPI). Their structures, gel and digestion properties were further investigated. TA was observed to covalently bind with SPI. TA-SPI and M-TA-SPI complexes showed different molecule size and spatial structures after binding with M and TA. The increasing of TA amount changed the intramolecular interactions, microstructure and texture properties of M-TA-SPI gels. Compared with TA-SPI, M retarded the gastric digestion of M-TA-SPI and caused higher TA release amount in intestinal tract. In this study, M-TA-SPI was determined to be a good carrier to protect and release TA in gastrointestinal digestion. This kind of complex may have potential applications for loading polyphenols in nutraceuticals.


Assuntos
Magnésio , Proteínas de Soja , Proteínas de Soja/química , Polifenóis
13.
Ying Yong Sheng Tai Xue Bao ; 35(2): 489-500, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523107

RESUMO

The expansion of roads exacerbates the fragmentation of ecological networks and obstructs landscape connectivity. Scientific analysis of the impacts of different grades of roads on landscape connectivity and ecological networks is crucial for guiding road planning and ecological conservation. Based on the data of 2020 road network, land cover types, and digital elevation models, we used morphological spatial pattern analysis and circuit theory to construct ecological networks within different species dispersal distances (1, 3, 5, 10 km) in Fuzhou. We analyzed the impacts of roads of different grades (motorway, urban expressway, primary and secondary highway) on landscape connectivity at the landscape-patch-corridor scale. The results showed that at the landscape scale, overall landscape connectivity was significantly positively correlated with species dispersal distance. The motorway, urban expressway, primary and secondary highway had the lowest decline rate of overall landscape connectivity within a 10 km species dispersal range, being reduced by 15.6%, 5.3%, 1.5% and 5.2%, respectively. At the patch scale, in the comparison of roads of different grades, motorway led to the highest decline rate of patch connectivity within 1 and 5 km species dispersal range, while primary highway led to the highest decline rate of patch connectivity within 3 and 10 km species dispersal range. At the corridor scale, urban expressway led the highest increase rate of indices. The cost-weighted distance of the overall least-cost path, the ratio of cost-weighted distance to length, ove-rall effective resistance, and total corridor length within 5 km species dispersal range were increased by 43.4%, 33.2%, 57.3%, and 7.3%, respectively. As the distance of species dispersal increased, the patches with high importance were reduced from the northern, central, and northwestern regions to the northern regions, leading to a decrease in the living space of species, and the key corridors were gradually extending from the northwestern and southern regions to the central regions. Our results can guide the construction and optimization of Fuzhou's ecological network from an overall perspective, and provide a scientific basis for biodiversity conservation, ecological restoration, and road network planning under the context of limited land resource utilization.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Cidades , Biodiversidade , China
14.
Nanoscale Horiz ; 9(6): 946-955, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38456521

RESUMO

Molybdenum disulfide (MoS2) has emerged as a promising material for catalysis and sustainable energy conversion. However, the inertness of its basal plane to electrochemical reactions poses challenges to the utilization of wafer-scale MoS2 in electrocatalysis. To overcome this limitation, we present a technique that enhances the catalytic activity of continuous MoS2 by preferentially activating its buried grain boundaries (GBs). Through mild UV irradiation, a significant enhancement in GB activity was observed that approaches the values for MoS2 edges, as confirmed by a site-selective photo-deposition technique and micro-electrochemical hydrogen evolution reaction (HER) measurements. Combined spectroscopic characterization and ab-initio simulation demonstrates substitutional oxygen functionalization at the grain boundaries to be the origin of this selective catalytic enhancement by an order of magnitude. Our approach not only improves the density of active sites in MoS2 catalytic processes but yields a new photocatalytic conversion process. By exploiting the difference in electronic structure between activated GBs and the basal plane, homo-compositional junctions were realized that improve the photocatalytic synthesis of hydrogen by 47% and achieve performances beyond the capabilities of other catalytic sites.

15.
Eur J Med Chem ; 267: 116228, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38354521

RESUMO

In quest for new photosensitizers (PSs) with remarkable antitumor photodynamic efficacy, a series of fifteen quaternary ammonium (QA) cations conjugated 5,15-diaryltetranaphtho[2,3]porphyrins (Ar2TNPs) was synthesized and evaluated in vitro and in vivo to understand how variations in the length of the alkoxy group and the kind of QA cations on meso-phenyl influence the photodynamic antitumor activity. All final compounds (I1-5, II1-5, and III1-5) exhibited robust absorption at 729 nm with significant bathochromic shift and high molar extinction coefficients (1.16 × 105-1.41 × 105 M-1 cm-1), as well as other absorptions at 445, 475, 651, and 714 nm for tumors and other diseases of diverse sizes and depths. Upon exposure to 474 nm light, they displayed intense fluorescence emission with fluorescence quantum yields ranging from 0.32 to 0.43. The ability to generate reactive oxygen species (ROS) was also quantified, attaining a maximum rate of up to 0.0961 s-1. The IC50 values of all the compounds regarding phototoxicity and dark toxicity were determined using KYSE-150 cells, and the phototoxicity indices were calculated. Among these compounds, III1 demonstrated the highest phototoxic index with minimal dark toxicity, and suppressed successfully the growth of esophageal carcinoma xenograft with favorable tolerance in vivo. Furthermore, the histological results showed III1-mediated PDT had a significant cytotoxic effect on the tumor. These outcomes underscore the potential of III1 as a highly effective antitumor photosensitizer drug in photodynamic therapy (PDT).


Assuntos
Compostos de Amônio , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Cátions
18.
Bioorg Chem ; 143: 107097, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190797

RESUMO

To discover new photosensitizers with long wavelength UV-visible absorption, high efficiency, and low side effects for photodynamic therapy, here, a series of novel thieno[3,2-b]thiophene-fused BODIPY derivatives were designed, synthesized and characterized. These compounds had a distinct absorption band at 640-680 nm, fluorescence emission at 650-760 nm, and good solubility with anti-aggregation effects. These new compounds possessed obvious singlet oxygen generation ability and photodynamic anti-Eca-109 cancer cells activities in vitro. Among them, compound II4 could be well uptaked by Eca-109 cells, and result in the apoptosis after laser irradiation, and have outstanding photodynamic efficiency both in vitro and in vivo. Therefore, II4 could be considered as a potential photosensitizer drug candidate for PDT and photo-imaging.


Assuntos
Compostos de Boro , Fotoquimioterapia , Fotoquimioterapia/métodos , Solubilidade , Tiofenos/farmacologia , Fármacos Fotossensibilizantes/farmacologia
19.
Curr Med Sci ; 44(1): 134-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38273178

RESUMO

OBJECTIVE: SUMO-specific protease 3 (SENP3), a member of the SUMO-specific protease family, reverses the SUMOylation of SUMO-2/3 conjugates. Dysregulation of SENP3 has been proven to be involved in the development of various tumors. However, its role in mantle cell lymphoma (MCL), a highly aggressive lymphoma, remains unclear. This study was aimed to elucidate the effect of SENP3 in MCL. METHODS: The expression of SENP3 in MCL cells and tissue samples was detected by RT-qPCR, Western blotting or immunohistochemistry. MCL cells with stable SENP3 knockdown were constructed using short hairpin RNAs. Cell proliferation was assessed by CCK-8 assay, and cell apoptosis was determined by flow cytometry. mRNA sequencing (mRNA-seq) was used to investigate the underlying mechanism of SENP3 knockdown on MCL development. A xenograft nude mouse model was established to evaluate the effect of SENP3 on MCL growth in vivo. RESULTS: SENP3 was upregulated in MCL patient samples and cells. Knockdown of SENP3 in MCL cells inhibited cell proliferation and promoted cell apoptosis. Meanwhile, the canonical Wnt signaling pathway and the expression of Wnt10a were suppressed after SENP3 knockdown. Furthermore, the growth of MCL cells in vivo was significantly inhibited after SENP3 knockdown in a xenograft nude mouse model. CONCLUSION: SENP3 participants in the development of MCL and may serve as a therapeutic target for MCL.


Assuntos
Linfoma de Célula do Manto , Adulto , Animais , Humanos , Camundongos , Apoptose/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Modelos Animais de Doenças , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/patologia , Camundongos Nus , Proteínas do Tecido Nervoso , Peptídeo Hidrolases/uso terapêutico , RNA Mensageiro , Proteínas Wnt/uso terapêutico
20.
Chem Biol Drug Des ; 103(1): e14410, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230794

RESUMO

Triptolide (TPL), the main active ingredient of Tripterygium wilfordii, has anti-inflammatory, immunomodulatory, and antitumor actions. It can also inhibit cell proliferation and metastasis while promoting apoptosis of several tumors, such as colorectal cancer (CRC). However, the mechanism of TPL against CRC is not clear. This study was designed to investigate the effects and molecular mechanisms of TPL on the proliferation and invasion ability of CRC cells. A human CRC cell line (HT29 cell line) cultured in vitro was treated with different concentrations of TPL (0, 25, 50, and 100 nmol/L). The proliferation of cells was detected by MTT, the invasion ability of cells by Transwell, and the apoptosis level by flow cytometry. The protein expression levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), matrix metalloproteinase (MMP)-2, and MMP-9 were detected by western blotting. After transfection with sh-Nrf2, HT29 cells were divided into NC group, NC + TPL group and sh-Nrf2 + TPL group, and the above assays were repeated for each group. TPL significantly inhibited the proliferation and invasion ability of HT29 cells and promoted apoptosis (p < .05). Notably, its inhibitory or promotional effects were concentration-dependent, which were enhanced with increasing drug concentration (p < .05). After silencing Nrf2 expression, the proliferation, and invasion ability of HT29 cells were further significantly inhibited while cells apoptosis was further promoted (p < .05). Besides, the decreased Nrf2 expression reduced the protein expression levels of MMP-2 and MMP-9 (p < .05). TPL can effectively inhibit the proliferation and invasion while promoting apoptosis of HT29 cells. And its mechanism of action may be related to the inhibition of Nrf2 signaling expression.


Assuntos
Neoplasias Colorretais , Diterpenos , Fenantrenos , Humanos , Metaloproteinase 9 da Matriz/genética , Fator 2 Relacionado a NF-E2 , Proliferação de Células , Diterpenos/farmacologia , Apoptose , Compostos de Epóxi/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...