Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Genet ; 12: 735862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899834

RESUMO

Perilla (Perilla frutescens), a traditional medicinal and oilseed crop in Asia, contains extremely high levels of polyunsaturated α-linolenic acid (ALA) (up to 60.9%) in its seeds. ALA biosynthesis is a multistep process catalyzed by fatty acid desaturases (FADs), but the FAD gene family in perilla has not been systematically characterized. Here, we identified 42 PfFADs in the perilla genome and classified them into five subfamilies. Subfamily members of PfFADs had similar exon/intron structures, conserved domain sequences, subcellular localizations, and cis-regulatory elements in their promoter regions. PfFADs also possessed various expression patterns. PfFAD3.1 was highly expressed in the middle stage of seed development, whereas PfFAD7/8.3 and PfFAD7/8.5 were highly expressed in leaf and later stages of seed development, respectively. Phylogenetic analysis revealed that the evolutionary features coincided with the functionalization of different subfamilies of PUFA desaturase. Heterologous overexpression of PfFAD3.1 in Arabidopsis thaliana seeds increased ALA content by 17.68%-37.03%. These findings provided insights into the characteristics and functions of PfFAD genes in perilla.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-775382

RESUMO

The research is aimed to study of the influence of environmental factors on the yield and quality traits, and find out the regularity of the growth and development of perilla. The main environmental factor data in six ecological area in Guizhou province were collected, and the correlation analysis with yield and quality traits of 15 perilla strains was conducted. The results showed that the cultivation environment has significant effects on the yield and quality traits of perilla. The effect of environment on main yield composed traits, contained grain number in top spike, effective panicle number per plant, plant height, top spike length, growth period, and thousand seed weight was degressive. In the different environmental factors, the latitude showed positive correlation with yield, growth period and effective panicle number per plant, and negative correlation with top spike length and grain number in top spike. Elevation showed negative correlation with the growth period of perilla. The perilla yield increased at first and then decreased with altitude rising, with the maximum in the 800 m altitude. The 600-900 m altitude is suitable area for perilla. Except for positive correlation with the plant height, and negative correlation with top spike length, the longitude showed in apparent impact on other traits. Sunshine duration, temperature and rainfall accumulation showed different effect on the different perilla strains. For yield composed traits, the sunshine duration was negatively correlation with the plant length. The accumulated temperature and mean temperature showed negative correlation with the main spike length, the rainfall showed negative correlation with the precipitation and growth period, plant height, ear number. The environmental impact on the oil compounds decreased with oleic acid, stearic acid, linoleic acid, -linolenic acid, palmitic acid and oil content. Correlation analysis showed that the significantly negative correlation between the oil content and palmitic acid and linoleic acid content, and the positive correlation between linolenic acid content, -linolenic acid content showed significant negative correlation with other fatty acids composition, and palmitic acid, stearic acid, oleic acid, linoleic acid showed significant positive correlation with each other. The influence of different environmental factors on the quality of perilla were as follows: the oil content was positively associated with elevation and sunshine duration. -Linolenic acid content showed negative correlation with longitude, latitude, accumulated temperature and mean temperature, but positive correlation with altitude, sunlight and rainfall capacity. The correlation between palmitic acid, stearic acid, oleic acid, linoleic acid and environmental factors showed contrast character of -linolenic acid. This study detailed discussed the influence of environmental factors on the quality of perilla, which provided the foundation of ecological planting technology and geoherbalism research of perilla.


Assuntos
Meio Ambiente , Ácidos Graxos , Perilla frutescens , Química , Compostos Fitoquímicos , Óleos de Plantas
3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-350130

RESUMO

Perilla frutescens is one of 60 kinds of food and medicine plants in the initial directory announced by health ministry of China. With the development of Perilla domain in recent , the breeding and application of good varieties has become the main bottleneck of its development. This study reported that applied to the system selection, add to marker-assisted method to breed perilla varieties. Through the whole genome sequencing and consistency matching, annotated the mutation locus according to genome data, and comparison analysis with Perilla common variants database, finally selected 30 non-synonymous mutation SNPs used as characteristic markers of Zhongyan Feishu No.1. those SNP marker were used as chosen standard of Perilla varieties. Finally breeding new perilla variety Zhongyan Feishu No.1, which possess to characters of the leaf and seed dual-used, high yield, high resistance, and could used to green fertilizer. The Zhongyan Feishu No.1 acquired the plant new varieties identification of Beijing city , the identification numbers is 2016054. Marker assisted identification guide new varieties breeding in plants, which can provide a new reference for breeding of medicinal plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...