Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(24): 64904-64931, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37097560

RESUMO

The main intention in the modern era is to make life and activities on earth more comfortable by adding necessary products through biological machinery. Millions of tons of biological raw materials and lignocellulosic biomass are wasted by burning each year without providing benefits to living organisms. Instead of being the cause of disturbing the natural environment by increasing global warming and pollutants worldwide, now, it is the need of the hour to develop an advanced strategy to utilize these biological raw materials to produce renewable energy resources to meet the energy crisis. The review presents the idea of multiple enzymes in one step to hydrolyze complex biomaterials into useful products. The paper discusses how multiple enzymes are arranged in a cascade for complete hydrolysis of raw material in one-pot to prevent multistep, time consuming, and expensive methods. Furthermore, there was the immobilization of multiple enzymes in a cascade system with in vitro and in vivo conditions for reusability of enzymes. The role of genetic engineering, metabolic engineering, and random mutation techniques is described for the development of multiple enzyme cascades. Techniques that are involved in the improvement of native strain to recombinant strain for the enhancement of hydrolytic capacity were used. The preparative steps, before enzymatic hydrolysis like acid, and base treatment methods are more effective for improving the hydrolysis of biomass by multiple enzymes in a one-pot system. Finally, the applications of one-pot multienzyme complexes in biofuel production from lignocellulosic biomass, biosensor production, medicine, food industry, and the conversion of biopolymers into useful products are described.


Assuntos
Engenharia Genética , Lignina , Lignina/metabolismo , Biocombustíveis , Biomassa , Hidrólise
2.
Environ Sci Pollut Res Int ; 30(2): 4853-4865, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35974282

RESUMO

Recycling organic waste and converting them into renewable energy are a promising route for environment protection and effective biochemical reactions suitable for industrial hydrogen synthesis. This study targeted to isolate a pure anaerobic culture with potential to hydrolyze different biomass and production of biohydrogen. For this, a sample of full-scale anaerobic digester, fed with a multicomponent solid, was inoculated on Reinforced Clostridial Medium (RCM) in strict anaerobic conditions. An anaerobic Clostridium butyricum CBT-1 strain was isolated, identified from morphological and 16S rRNA sequence. The CBT-1 culture expressed amylase, cellulase and peroxidases activities. The strain exhibited visual decolorization of both Azure B and crystal violet dyes. In batch fermentation experiment, the CBT-1 produced highest of 3.06, 2.67 and 2.46 mol/mol H2 yield from glucose, starch and cellulose respectively, whereas, the CBT-1 showed low 0.43 mol H2/mol of substrate from untreated rice straw due to lignin in compact structure and comparatively high H2 yield of 1.91 and 2.01 mol H2/mol of substrate rice straw hydrolysate and kitchen food waste (KFWS) respectively. The cumulative volumetric yield of H2 was 358.15, 300.8 and 294.5NmL/gSub from glucose, starch and cellulose respectively. Similarly, the cumulative H2 volume was 76.7, 184.4, 237.2 NmL/gVS from untreated rice straw, rice straw hydrolysate and kitchen food waste. This study emphasizes the prospects to find similar robust anaerobic culture for hydrolyzing complex biomass. Such strains could be used as standard co-inoculum for biohydrogen obtaining and as the biocatalyst for commercial scale applications.


Assuntos
Clostridium butyricum , Eliminação de Resíduos , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Anaerobiose , Alimentos , RNA Ribossômico 16S/genética , Reatores Biológicos , Fermentação , Celulose , Amido , Hidrogênio
3.
Chinese Journal of Biotechnology ; (12): 1501-1511, 2015.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-337471

RESUMO

Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.


Assuntos
Biocombustíveis , Biomassa , Reatores Biológicos , Furaldeído , Química , Temperatura Alta , Kelp , Temperatura , Xilose , Química , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...