Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 222: 116094, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423187

RESUMO

BACKGROUND AND AIM: Osmotic changes represent a burden for the body and their limitation would be beneficial. We hypothesized that ubiquitous natural compounds could guard against cytotoxic effects of osmotic stress. We evaluated the anti-hypertonic mechanism of quercetin and 2,3-dehydrosilybin in H9c2 cells in vitro. EXPERIMENTAL PROCEDURE: Protective effect of both compounds was determined by neutral red assay, cell apoptosis was estimated by measuring caspase-3 activity and verified by western blot and annexin V assay. Phosphorylation level of selected proteins was also detected. Mitochondrial membrane potential was evaluated using dye JC-1. Ca2+ signals were evaluated using genetically encoded fluorescent Ca2+ biosensor GCaMP7f. Formation of reactive oxygen species was measured using an oxidant-sensing probe dihydrofluorescein diacetate. KEY RESULTS: Quercetin protected H9c2 cells against hypertonic stress-induced cell death. We observed a significant increase in intracellular Ca2+ levels ([Ca2+]cyto) when cells originally placed in a hypertonic solution were returned to a normotonic environment. Quercetin was found to prevent this increase in [Ca2+]cyto and also the depolarization of mitochondrial membrane potential. CONCLUSIONS AND IMPLICATIONS: Quercetin, but not 2,3-dehydrosilybin, reduced adverse effects of osmotic stress mainly by dampening the elevation of [Ca2+]cyto and mitochondrial Ca2+ overload. This may consequently prevent MPTP pore opening and activation of apoptosis.


Assuntos
Apoptose , Quercetina , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Morte Celular , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...