Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 12(11): 4193-4203, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36386473

RESUMO

Investigation on how nature produces natural compounds with chemical and biological diversity at the genetic level offers inspiration for the discovery of new natural products and even their biological targets. The polyketide rumbrin (1) is a lipid peroxide production and calcium accumulation inhibitor, which contains a chlorinated pyrrole moiety that is a rare chemical feature in fungal natural products. Here, we identify the biosynthetic gene cluster (BGC) rum of 1 and its isomer 12E-rumbrin (2) from Auxarthron umbrinum DSM3193, and elucidate their biosynthetic pathway based on heterologous expression, chemical complementation, and isotopic labeling. We show that rumbrins are assembled by a highly reducing polyketide synthase (HRPKS) that uniquely incorporates a proline-derived pyrrolyl-CoA starer unit, and followed by methylation and chlorination. Sequent precursor-directed biosynthesis was able to yield a group of rumbrin analogues. Remarkably, inspired by the presence of a human immunodeficiency virus (HIV)-Nef-associated gene in the rum cluster, we predicted and pharmacologically demonstrated rumbrins as potent inhibitors of HIV at the nanomolar level. This work enriches the recognition of unconventional starter units of fungal PKSs and provides a new strategy for genome mining-guided drug discovery.

2.
Exp Ther Med ; 14(4): 2771-2778, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28912841

RESUMO

Dilated cardiomyopathy (DCM) is the most common type of cardiomyopathy that account for the majority of heart failure cases. The present study aimed to reveal the underlying molecular mechanisms of DCM and provide potential biomarkers for detection of this condition. The public dataset of GSE35108 was downloaded, and 4 normal induced pluripotent stem cell (iPSC)-derived cardiomyocytes (N samples) and 4 DCM iPSC-derived cardiomyocytes (DCM samples) were utilized. Raw data were preprocessed, followed by identification of differentially expressed genes (DEGs) between N and DCM samples. Crucial functions and pathway enrichment analysis of DEGs were investigated, and protein-protein interaction (PPI) network analysis was conducted. Furthermore, a module network was extracted from the PPI network, followed by enrichment analysis. A set of 363 DEGs were identified, including 253 upregulated and 110 downregulated genes. Several biological processes (BPs), such as blood vessel development and vasculature development (FLT1 and MMP2), cell adhesion (CDH1, ITGB6, COL6A3, COL6A1 and LAMC2) and extracellular matrix (ECM)-receptor interaction pathway (CDH1, ITGB6, COL6A3, COL6A1 and LAMC2), were significantly enriched by these DEGs. Among them, MMP2, CDH1 and FLT1 were hub nodes in the PPI network, while COL6A3, COL6A1, LAMC2 and ITGB6 were highlighted in module 3 network. In addition, PENK and APLNR were two crucial nodes in module 2, which were linked to each other. In conclusion, several potential biomarkers for DCM were identified, such as MMP2, FLT1, CDH1, ITGB6, COL6A3, COL6A1, LAMC2, PENK and APLNR. These genes may serve significant roles in DCM via involvement of various BPs, such as blood vessel and vasculature development and cell adhesion, and the ECM-receptor interaction pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...