Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(17): 4538-4548, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37152256

RESUMO

G-quadruplexes (G4s) are significant nucleic acid secondary structures formed by guanine-rich sequences. Many single-emission G4 fluorescent probes that are lit up by inhibiting intramolecular rotation have been reported. However, they are non-fluorescent unless structurally rigidified, making them sensitive to other intracellular crowding and confinement environments in the cell, like viscosity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Herein, we structurally modulate green fluorescent protein (GFP)-like chromophores by integrating the imidazolidinone scaffold of the GFP chromophore and coumarin 6H, obtaining a G4 responsive dual-emission chromophore, called NHCouI. The red emission signal of NHCouI can specifically respond to parallel G4s, while its green emission signal is inert and acts as an internal reference signal. NHCouI-G4 complexes feature high fluorescence quantum yield and excellent anti-photobleaching properties. NHCouI can self-calibrate the signal and avoid viscosity disturbances within the range of major subcellular organelles during G4 imaging in living cells. It is also applied to reflect the difference between apoptosis and ferroptosis via tracking G4s. To the best of our knowledge, NHCouI is the first small molecule G4 probe enabled by internal reference correction capability, opening up new avenues for dual-emission chromophore development and high-fidelity and reliable analysis in G4 imaging research.

2.
Membranes (Basel) ; 8(3)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011789

RESUMO

Continuous and high silica SSZ-13 zeolite membranes were prepared on porous mullite supports from high SiO2/Al2O3 ratio or aluminum-free precursor synthesis gel. Single gas permeance (CO2 and CH4) of the high silica SSZ-13 zeolite membrane was decreased with the SiO2/Al2O3 ratio in the precursor synthesis gel, while the ideal CO2/CH4 selectivity of the membrane was gradually increased. Moreover, effects of synthesis conditions (such as H2O/SiO2 and RNOH/SiO2 ratios of precursor synthesis gel, crystallization time) on the single gas permeance performance of high silica SSZ-13 zeolite membranes were studied in detail. Medium H2O/SiO2 and RNOH/SiO2 ratios in the initial synthesis gel were crucial to prepare the good CO2 perm-selective SSZ-13 zeolite membrane. When the molar composition of precursor synthesis gel, crystallization temperature and time were 1.0 SiO2: 0.1 Na2O: 0.1 TMAdaOH: 80 H2O, 160 °C and 48 h, CO2 permeance and ideal CO2/CH4 selectivity of the SSZ-13 zeolite membrane were 0.98 × 10-7 mol/(m²·s·Pa) and 47 at 25 °C and 0.4 MPa. In addition, the SiO2/Al2O3 ratio of the corresponding SSZ-13 zeolite was 410 by X-ray fluorescence spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...