Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 172: 116229, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330708

RESUMO

Reperfusion stands as a pivotal intervention for ischemic heart disease. However, the restoration of blood flow to ischemic tissue always lead to further damage, which is known as myocardial ischemia/reperfusion injury (MIRI). Ramelteon is an orally administered drug used to improve sleep quality, which is famous for its high bioadaptability and absence of notable addictive characteristics. However, the specific mechanism by which it improves MIRI is still unclear. Sirtuin-3 (Sirt3), primarily located in mitochondria, is crucial in mitigating many cardiac diseases, including MIRI. Based on the structure of Sirt3, we simulated molecular docking and identified several potential amino acid binding sites between it and ramelteon. Therefore, we propose a hypothesis that ramelteon may exert cardioprotective effects by activating the Sirt3 signaling pathway. Our results showed that the activation levels and expression level of Sirt3 were significantly decreased in MIRI tissue and H2O2 stimulated H9C2 cells, while ramelteon treatment upregulated Sirt3 activity and expression. After treat with 3-TYP, a classic Sirt3 activity inhibitor, we constructed myocardial ischemia/reperfusion surgery in vivo and induced H9C2 cells with H2O2 in vitro. The results showed that the myocardial protection and anti-apoptotic effects of ramelteon were antagonized by 3-TYP, indicating that the activation of Sirt3 is a key mechanism for ramelteon to exert myocardial protection. In summary, our results confirm a novel mechanism by which ramelteon improves MIRI by activating Sirt3 signaling pathway, providing strong evidence for the treatment of MIRI with ramelteon.


Assuntos
Indenos , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Sirtuína 3 , Humanos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , Miócitos Cardíacos , Apoptose
2.
Eur J Pharmacol ; 964: 176253, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38096968

RESUMO

Diabetes cardiomyopathy (DCM) refers to myocardial dysfunction and disorganization resulting from diabetes. In this study, we investigated the effects of berberine on cardiac function in male db/db mice with metformin as a positive control. After treatment for 8 weeks, significant improvements in cardiac function and a reduction in collagen deposition were observed in db/db mice. Furthermore, inflammation and pyroptosis were seen to decrease in these mice, as evidenced by decreased expressions of p-mTOR, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), IL-1ß, IL-18, caspase-1, and gasdermin D (GSDMD). In vitro experiments on H9C2 cells showed that glucose exposure at 33 mmol/L induced pyroptosis, whereas berberine treatment reduced the expression of p-mTOR and NLRP3 inflammasome components. Moreover, berberine treatment was seen to inhibit the generation of mitochondrial reactive oxygen species (mtROS) and effectively improve cell damage in high glucose-induced H9C2 cells. The mTOR inhibitor, Torin-1, showed a therapeutic effect similar to that of berberine, by reducing the expression of NLRP3 inflammasome components and inhibiting mtROS generation. However, the activation of mTOR by MHY1485 partially nullified berberine's protective effects during high glucose stress. Collectively, our study reveals the mechanism that berberine regulates the mTOR/mtROS axis to inhibit pyroptosis induced by NLRP3 inflammasome activation, thereby alleviating DCM.


Assuntos
Berberina , Cardiomiopatias Diabéticas , Animais , Masculino , Camundongos , Berberina/farmacologia , Berberina/uso terapêutico , Cardiomiopatias Diabéticas/tratamento farmacológico , Glucose/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR
3.
Artigo em Inglês | MEDLINE | ID: mdl-38032492

RESUMO

Pulmonary fibrosis (PF) is a devastating lung disease that leads to impaired lung function and ultimately death. Several studies have suggested that melatonin, a hormone involved in regulating sleep-wake cycles, may be effective in improving PF. Ramelteon, an FDA-approved melatonin receptor agonist, has shown promise in exerting an anti-PF effect similar to melatonin. However, further investigations are required for illuminating the extent on its therapeutic benefits and the underlying molecular mechanisms. In this work, a mouse lung fibrosis model was built through intratracheal administration of bleomycin (BLM). Subsequently, the mice were administrated Ramelteon for a duration of 3 weeks to explore its efficacy and mechanism of action. Additionally, we utilized a TGF-ß1-induced MRC-5 cell model to further investigate the molecular mechanism underlying ramelteon's effects. Functionally, Ramelteon partially abrogated TGF-ß1-induced pulmonary fibrosis and reduced fibroblast proliferation, extracellular matrix deposition, and differentiation into myofibroblasts. In vivo experiments, ramelteon attenuated BLM-induced pulmonary fibrosis and collagen deposition. Mechanistically, ramelteon exerts its beneficial effect by alleviating translocation and expression of YAP1, a core component of Hippo pathway, from cytoplasm to nucleus; however, overexpression of YAP1 reversed this effect. In conclusion, our findings indicate that ramelteon can improve PF by regulating Hippo pathway and may become a potential candidate as a therapy to PF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...