Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 1): 132666, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806081

RESUMO

Elongation of very long-chain fatty acids protein 6 (ELOVL6) plays a pivotal role in the synthesis of endogenous fatty acids, influencing energy balance and metabolic diseases. The primary objective of this study was to discover the molecular attributes and regulatory roles of ELOVL6 in male Nile tilapia, Oreochromis niloticus. The full-length cDNA of elovl6 was cloned from male Nile tilapia, and was determined to be 2255-bp long, including a 5'-untranslated region of 193 bp, a 3'-untranslated region of 1252 bp, and an open reading frame of 810 bp encoding 269 amino acids. The putative protein had typical features of ELOVL proteins. The transcript levels of elovl6 differed among various tissues and among fish fed with different dietary lipid sources. Knockdown of elovl6 in Nile tilapia using antisense RNA technology resulted in significant alterations in hepatic morphology, long-chain fatty acid synthesis, and fatty acid oxidation, and led to increased fat deposition in the liver and disrupted glucose/lipid metabolism. A comparative transcriptomic analysis (elovl6 knockdown vs. the negative control) identified 5877 differentially expressed genes with significant involvement in key signaling pathways including the peroxisome proliferator-activated receptor signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and the insulin signaling pathway, all of which are crucial for lipid and glucose metabolism. qRT-PCR analyses verified the transcript levels of 13 differentially expressed genes within these pathways. Our findings indicate that elovl6 knockdown in male tilapia impedes oleic acid synthesis, culminating in aberrant nutrient metabolism.


Assuntos
Ciclídeos , Elongases de Ácidos Graxos , Animais , Masculino , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Metabolismo dos Lipídeos/genética , Inativação Gênica , Fígado/metabolismo , Nutrientes/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Sequência de Aminoácidos , Clonagem Molecular , Acetiltransferases/genética , Acetiltransferases/metabolismo , Técnicas de Silenciamento de Genes
2.
BMC Genomics ; 25(1): 64, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229016

RESUMO

BACKGROUND: Largemouth bass (Micropterus salmoides) has significant economic value as a high-yielding fish species in China's freshwater aquaculture industry. Determining the major genes related to growth traits and identifying molecular markers associated with these traits serve as the foundation for breeding strategies involving gene pyramiding. In this study, we screened restriction-site associated DNA sequencing (RAD-seq) data to identify single nucleotide polymorphism (SNP) loci potentially associated with extreme growth differences between fast-growth and slow-growth groups in the F1 generation of a largemouth bass population. RESULTS: We subsequently identified associations between these loci and specific candidate genes related to four key growth traits (body weight, body length, body height, and body thickness) based on SNP genotyping. In total, 4,196,486 high-quality SNPs were distributed across 23 chromosomes. Using a population-specific genotype frequency threshold of 0.7, we identified 30 potential SNPs associated with growth traits. Among the 30 SNPs, SNP19140160, SNP9639603, SNP9639605, and SNP23355498 showed significant associations; three of them (SNP9639603, SNP9639605, and SNP23355498) were significantly associated with one trait, body length, in the F1 generation, and one (SNP19140160) was significantly linked with four traits (body weight, height, length, and thickness) in the F1 generation. The markers SNP19140160 and SNP23355498 were located near two growth candidate genes, fam174b and ppip5k1b, respectively, and these candidate genes were closely linked with growth, development, and feeding. The average body weight of the group with four dominant genotypes at these SNP loci in the F1 generation population (703.86 g) was 19.63% higher than that of the group without dominant genotypes at these loci (588.36 g). CONCLUSIONS: Thus, these four markers could be used to construct a population with dominant genotypes at loci related to fast growth. These findings demonstrate how markers can be used to identify genes related to fast growth, and will be useful for molecular marker-assisted selection in the breeding of high-quality largemouth bass.


Assuntos
Bass , Polimorfismo de Nucleotídeo Único , Animais , Bass/genética , Frequência do Gene , Genótipo , Peso Corporal/genética
3.
Appl Opt ; 60(36): 11180-11188, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201106

RESUMO

The potential of Brillouin scattering lidar for detecting the mixed layer depth (MLD) was studied. We simulated the Brillouin scattering lidar signal in various water environmental parameters and developed an MLD retrieval model for Brillouin scattering lidar data. We first analyzed the theoretical maximum detectable depth for Brillouin scattering lidar in low-latitude sea regions based on the multiple scattering lidar equations. Subsequently, a theoretical method for calculating the Brillouin scattering frequency shift and linewidth was derived based on the international thermodynamic equation of seawater-2010 and the coupled wave equations. Then we used the theoretical method and the temperature-salinity (T-S) profile of the global Argo data in low-latitude regions to simulate the vertical profile distribution of the Brillouin scattering frequency shift and linewidth. Furthermore, we used a maximum angle method to estimate the ocean MLD in low-latitude regions based on the vertical profile distribution of the Brillouin scattering frequency shift and density in seawater. They are well correlated, which indicates that the frequency-shift component of the Brillouin scattering lidar signal for estimating ocean MLD is feasible and reliable. It appears that airborne or spaceborne Brillouin scattering lidar technology provides great potential for high-efficiency, large-area, and long-term monitoring of the global ocean MLD and upper-ocean water bodies.

4.
Rapid Commun Mass Spectrom ; 33(16): 1336-1343, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31034697

RESUMO

RATIONALE: Authentication of fish is of importance in the view of toxins, allergen warnings and economic fraud control. Traditional methods in the authentication of fish, e.g. morphological, genetic and proteomic analysis, are either at low throughput or at high-cost. METHODS: A high-throughput matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS)-based approach was developed to analyze biomaterials from fish skin, and mass spectra from different fish species were compared by chemometric methods to differentiate fish species. RESULTS: A total of 51 fish samples were used to generate more than 150 fingerprinting mass spectra. The fish belonging to the same genus can be identified at species level. A mass spectral database of different fishes can be built as reference for authentication. The analysis can be performed based on micrograms of fish-skin sample and accomplished in 1-3 hours. CONCLUSIONS: The developed strategy holds potential to be applied to fish authentication in the fishing industry and as a scientific method to avoid mislabeling. It has promise to be practically used for fast and effective identification of closely related fish species to guarantee the quality of fishery products to consumers.


Assuntos
Proteínas de Peixes , Peixes/classificação , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Proteínas de Peixes/análise , Proteínas de Peixes/química , Análise de Componente Principal , Pele/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...