Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 219: 121298, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887040

RESUMO

Aggregation-induced emission luminogens (AIEgens) have been widely used to design fluorescent probes for chemosensing and bioimaging. However, it is still challenging to design long-lived AIE-active probes due to the lack of aggregation-induced phosphorescence (AIP) luminogens. In this work, we design and synthesize a long-lived molecular probe with aggregation-induced phosphorescence property for aluminum ion-specific detection by introducing multiple carboxylic acid groups in a unique twisted molecular skeleton, and develop a first phosphorescent detection method for aluminum ion based on aggregation-induced emission mechanism. The introduction of six carboxylic acid groups into the probe not only significantly enhances the water-solubility but also provides specific recognition unit for aluminum ions via complexation. The probe shows a very sharp emission enhancement in the presence of aluminum ions via aluminum ion-triggered aggregation-induced emission. The cytotoxicity test of the probe shows its biocompatible nature, and further imaging results in live human cells and roots of live Arabidopsis thaliana demonstrates that the designed AIP-active probe is capable of monitoring aluminum ions in complex biological systems. This work proposes a general design strategy for AIP-active probes, and provides valuable use of these AIP-active probes in bioimaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...