Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 125(4): e30544, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38450777

RESUMO

Mesenchymal stem cells (MSCs) display unique homing and immunosuppression features which make them promising candidates for cell therapy in inflammatory disorders. It is known that C-X-C chemokine receptor type 4 (CXCR4, also known as CD184) is a critical receptor implicated in MSCs migration, and the protein programmed death ligand-1 (PD-L1) is involved in MSC's immunosuppression. However, it remains unclear how the molecular mechanisms regulate PD-L1 expression for migration and immunosuppression of MSCs under the inflammatory microenvironment. In this article, we used the human adipose-derived mesenchymal stem cells (hADMSCs) treated with lipopolysaccharide (LPS) as an in vitro inflammatory model to explore the roles of PD-L1 on the migration and immunosuppression of MSC. Our results demonstrate that in hADMSCs, LPS significantly increased PD-L1 expression, which mediated the migration of the LPS-treated hADMSCs via CXCR4. In addition, we found that the increased PD-L1 expression in the LPS-treated hADMSCs inhibited B cell proliferation and immunoglobulin G secretion through nuclear factor-κB. Our study suggests that the PD-L1 plays critical roles in the homing and immunosuppression of MSCs which are a promising cell therapy to treat inflammatory diseases.


Assuntos
Antígeno B7-H1 , Células-Tronco Mesenquimais , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...