Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(25): 37294-37306, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379567

RESUMO

Wavelength-selective light absorption and the related switching operations are highly desired in optical devices. Herein, we report the approach for ultra-high quality (Q) graphene perfect optical absorption, which possesses impressive performance in switching manipulation. A record-breaking Q-factor (up to 105) is observed, suggesting one or two orders of magnitude larger than that of the conventional graphene absorbers. The ultra-low external leakage loss rate of quasi-bound states in the continuum (BIC) resonator and the ultra-low intrinsic absorption loss rate in the resonant mode volume are the main contributions for the ultra-high Q perfect absorption. By introducing a Kerr nonlinear medium, spectral relative intensity can be changed from 0 to 100% when an ultra-low pump light with the intensity of only 5 kW cm-2 is used. After a rather slight tuning of the refractive index (Δn = 5×10-4) for the resonators, the absorption contrast ratio reaches 31 dB. The switching related spectral wavelength shift sensitivity is up to 915 nm/RIU and the figure of merit (FOM) is 50 833. These features confirm the ultra-high tunability and switching manipulation. It is believed that the ultra-high Q-factor absorption offered by all-dielectric configuration provides plentiful potential applications for graphene-based devices in the all-optical switch, modulator, notch filter, etc.

2.
Opt Express ; 28(24): 37049-37057, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379786

RESUMO

In this work, we numerically demonstrate a new facile strategy for all-dielectric broadband optical perfect absorbers. A monolayer refractory titanium oxide and nitride (TiN/TiO2) core-shell nanowires array is used to form the grating on the opaque TiN substrate. Multiple resonant absorption bands are observed in the adjacent wavelength range, which therefore leads to the formation of an ultra-broadband absorption window from the visible to the infrared regime. The maximal absorption reaches 95.6% and the average absorption efficiency in the whole range (0.5-1.8 µm) is up to 85.4%. Moreover, the absorption bandwidth can be feasibly adjusted while the absorption efficiency can be still maintained in a high level via tuning the polarization state. Furthermore, the absorption window is observed to be highly adjustable in the wavelength range, showing a nearly linear relationship to the shell's index. These features not only confirm the achievement of the broadband perfect absorption but also introduce feasible ways to artificially manipulate the absorption properties, which will hold wide applications in metal-free plasmonic optoelectronic devices such as the solar harvesting, photo-detection, and thermal generation and its related bio-medical techniques.

3.
Opt Express ; 28(21): 31763-31774, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115142

RESUMO

In this work, a feasible way for perfect absorption in the whole solar radiance range is numerically demonstrated via the multiple resonances in a 600-nm-thick refractory prismoid. Under the standard AM 1.5 illumination, the measured solar energy absorption efficiency reaches 99.66% in the wavelength range from 280 nm to 4000 nm, which indicates only a rather small part of solar light (0.34%) escaped. The record harvesting efficiency directly results from the near-unity absorption for the multi-layer refractory resonators, which can simultaneously benefit from the multi-resonant behaviors of the structure and the broadband resonant modes by the material intrinsic features. The absorption including the intensity and frequency range can be adjusted via the structural features. These findings can hold wide applications in solar energy related optoelectronics such as the thermal-photovoltaics, photo-thermal technology, semiconductor assisted photo-detection, ideal thermal emitters, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...