Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 104(2): 100305, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38109999

RESUMO

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease in the United States and worldwide. Proteinuria is a major marker of the severity of injury. Dipeptidyl peptidase-4 inhibitor (DPP-4I) increases incretin-related insulin production and is, therefore, used to treat diabetes. We investigated whether DPP4I could have direct effect on kidney independent of its hypoglycemic activity. We, therefore, tested the effects of DPP4I with or without angiotensin-converting enzyme inhibitor (ACEI) on the progression of diabetic nephropathy and albuminuria in a murine model of DKD. eNOS-/-db/db mice were randomized to the following groups at age 10 weeks and treated until sacrifice: baseline (sacrificed at week 10), untreated control, ACEI, DPP4I, and combination of DPP4I and ACEI (Combo, sacrificed at week 18). Systemic parameters and urine albumin-creatinine ratio were assessed at baseline, weeks 14, and 18. Kidney morphology, glomerular filtration rate (GFR), WT-1, a marker for differentiated podocytes, podoplanin, a marker of foot process integrity, glomerular collagen IV, and alpha-smooth muscle actin were assessed at the end of the study. All mice had hyperglycemia and proteinuria at study entry at week 10. Untreated control mice had increased albuminuria, progression of glomerular injury, and reduced GFR at week 18 compared with baseline. DPP4I alone reduced blood glucose and kidney DPP-4 activity but failed to protect against kidney injury compared with untreated control. ACEI alone and combination groups showed significantly reduced albuminuria and glomerular injury, and maintained GFR and WT-1+ cells. Only the combination group had significantly less glomerular collagen IV deposition and more podoplanin preservation than the untreated control. DPP-4I alone does not decrease the progression of kidney injury in the eNOS-/-db/db mouse model, suggesting that targeting only hyperglycemia is not an optimal treatment strategy for DKD. Combined DPP-4I with ACEI added more benefit to reducing the glomerular matrix.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Inibidores da Dipeptidil Peptidase IV , Hiperglicemia , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Albuminúria/tratamento farmacológico , Albuminúria/complicações , Rim , Hipoglicemiantes/farmacologia , Camundongos Endogâmicos , Colágeno , Dipeptidil Peptidases e Tripeptidil Peptidases/farmacologia , Dipeptidil Peptidase 4
3.
J Vis Exp ; (195)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37306423

RESUMO

Gut microbiota dysbiosis plays a role in the pathophysiology of cardiovascular and metabolic disorders, but the mechanisms are not well understood. Fecal microbiota transplantation (FMT) is a valuable approach to delineating a direct role of the total microbiota or isolated species in disease pathophysiology. It is a safe treatment option for patients with recurrent Clostridium difficile infection. Preclinical studies demonstrate that manipulating the gut microbiota is a useful tool to study the mechanistic link between dysbiosis and disease. Fecal microbiota transplantation may help elucidate novel gut microbiota-targeted therapeutics for the management and treatment of cardiometabolic disease. Despite a high success rate in rodents, there remains translational changes associated with the transplantation. The goal here is to provide guidance in studying the effects of gut microbiome in experimental cardiovascular disease. In this study, a detailed protocol for the collection, handling, processing, and transplantation of fecal microbiota in murine studies is described. The collection and processing steps are described for both human and rodent donors. Lastly, we describe using a combination of the Swiss-rolling and immunostaining techniques to assess gut-specific morphology and integrity changes in cardiovascular disease and related gut microbiota mechanisms.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Disbiose , Transplante de Microbiota Fecal
4.
Circ Res ; 132(9): 1226-1245, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104557

RESUMO

Kidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph. The intestinal lymphatics, like blood vessels, are a route for transporting potentially harmful substances generated by the intestines. The lymphatic architecture and actions are uniquely suited to take up and transport large macromolecules, functions that differentiate them from blood vessels, allowing them to play a distinct role in a variety of physiological and pathological processes. Here, we focus on the mechanisms by which kidney diseases result in deleterious changes in intestinal lymphatics and consider a novel paradigm of a vicious cycle of detrimental organ cross talk. This concept involves kidney injury-induced modulation of intestinal lymphatics that promotes production and distribution of harmful factors, which in turn contributes to disease progression in distant organ systems.


Assuntos
Nefropatias , Vasos Linfáticos , Humanos , Intestinos , Sistema Linfático
5.
Lab Invest ; 103(2): 100015, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37039147

RESUMO

Exogenous erythropoietin (EPO) is used to treat anemia in patients with chronic kidney disease (CKD). Concerns about the possible adverse effect of EPO on the progression of CKD have been raised owing to nonerythroid cell effects. We investigated the effects of low-dose EPO, independent of correcting anemia, on existing glomerulosclerosis. Adult mice underwent 5/6 nephrectomy and were randomized into the following 4 groups at week 8 after surgery: vehicle (VEH), losartan (angiotensin II type 1 receptor blocker [ARB]), darbepoetin-α (DA), or combination (DA+ARB). Four weeks later, mice were euthanized, followed by evaluation of renal structure and function. Glomerular endothelial cells and podocytes were cultured to evaluate the effects of DA on cell migration, apoptosis, and Akt signaling. ARB reduced blood pressure, albuminuria, and the level of serum creatinine and increased hematocrit compared with VEH, whereas low-dose DA only reduced the level of serum creatinine. Combination treatment showed a trend to increase hematocrit and survival compared with ARB alone. Combination treatment but not ARB alone significantly reduced the progression of glomerulosclerosis compared with VEH. Low-dose DA resulted in more preserved glomerular and peritubular capillary endothelial cells with increased p-Akt and even further endothelial cell preservation in combination with ARB. In cultured glomerular endothelial cells, angiotensin II induced more apoptosis, reduced migration, and decreased p-Flk1, a receptor for the proangiogenic vascular endothelial growth factor. DA counteracted these injuries and increased p-Akt, a key factor in angiogenesis and cell survival. DA also protected cultured podocytes against transforming growth factor ß-induced apoptosis and synaptopodin loss. Low-dose EPO directly protects glomerular and peritubular endothelial cells via Akt phosphorylation. Therefore, treatment using a combination of low-dose EPO and ARB results in less progression of glomerulosclerosis in an experimental CKD model.


Assuntos
Eritropoetina , Insuficiência Renal Crônica , Camundongos , Animais , Angiotensina II/metabolismo , Creatinina , Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Eritropoetina/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico
6.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36125905

RESUMO

Lipoprotein modification by reactive dicarbonyls, including isolevuglandin (IsoLG), produces dysfunctional particles. Kidneys participate in lipoprotein metabolism, including tubular uptake. However, the process beyond the proximal tubule is unclear, as is the effect of kidney injury on this pathway. We found that patients and animals with proteinuric injury have increased urinary apolipoprotein AI (apoAI), IsoLG, and IsoLG adduct enrichment of the urinary apoAI fraction compared with other proteins. Proteinuric mice, induced by podocyte-specific injury, showed more tubular absorption of IsoLG-apoAI and increased expression of lipoprotein transporters in proximal tubular cells compared with uninjured animals. Renal lymph reflects composition of the interstitial compartment and showed increased apoAI and IsoLG in proteinuric animals, supporting a tubular cell-interstitium-lymph pathway for renal handling of lipoproteins. IsoLG-modified apoAI was not only a marker of renal injury but also directly damaged renal cells. IsoLG-apoAI increased inflammatory cytokines in cultured tubular epithelial cells (TECs), activated lymphatic endothelial cells (LECs), and caused greater contractility of renal lymphatic vessels than unmodified apoAI. In vivo, inhibition of IsoLG by a dicarbonyl scavenger reduced both albuminuria and urinary apoAI and decreased TEC and LEC injury, lymphangiogenesis, and interstitial fibrosis. Our results indicate that IsoLG-modified apoAI is, to our knowledge, a novel pathogenic mediator and therapeutic target in kidney disease.


Assuntos
Células Endoteliais , Nefropatias , Camundongos , Animais , Células Endoteliais/metabolismo , Apolipoproteína A-I/metabolismo , Lipoproteínas , Rim/patologia , Nefropatias/patologia
7.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682697

RESUMO

We previously found that short-term treatment (week 8 to 12 after injury) with high-dose angiotensin receptor blocker (ARB) induced the regression of existing glomerulosclerosis in 5/6 nephrectomy rats. We therefore assessed the effects of long-term intervention with ARB vs. nonspecific antihypertensives in this study. Adult rats underwent 5/6 nephrectomy and renal biopsy 8 weeks later. The rats were then divided into three groups with equivalent renal function and glomerular sclerosis and treated with high-dose losartan (ARB), nonspecific antihypertensive triple-therapy (TRX), or left untreated (Control) until week 30. We found that blood pressure, serum creatinine levels, and glomerulosclerosis were lower at sacrifice in ARB and TRX vs. Control. Only ARB reduced proteinuria and maintained the density of WT-1-positive podocytes. Glomerular tufts showed more double-positive cells for CD44, a marker of activated parietal epithelial cells, and synaptopodin after ARB vs. TRX or Control. ARB treatment reduced aldosterone levels. ARB-treated rats had significantly improved survival when compared with TRX or Control. We conclude that both long-term ARB and triple-therapy ameliorate progression, but do not sustain the regression of glomerulosclerosis. ARB resulted in the superior preservation of podocyte integrity and decreased proteinuria and aldosterone, linked to increased survival in the uremic environment.


Assuntos
Nefropatias , Podócitos , Aldosterona/farmacologia , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Pressão Sanguínea , Nefropatias/patologia , Podócitos/patologia , Proteinúria/tratamento farmacológico , Proteinúria/patologia , Ratos
8.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163352

RESUMO

Lymphatic vessels are highly responsive to changes in the interstitial environment. Previously, we showed renal lymphatics express the Na-K-2Cl cotransporter. Since interstitial sodium retention is a hallmark of proteinuric injury, we examined whether renal sodium affects NKCC1 expression and the dynamic pumping function of renal lymphatic vessels. Puromycin aminonucleoside (PAN)-injected rats served as a model of proteinuric kidney injury. Sodium 23Na/1H-MRI was used to measure renal sodium and water content in live animals. Renal lymph, which reflects the interstitial composition, was collected, and the sodium analyzed. The contractile dynamics of isolated renal lymphatic vessels were studied in a perfusion chamber. Cultured lymphatic endothelial cells (LECs) were used to assess direct sodium effects on NKCC1. MRI showed elevation in renal sodium and water in PAN. In addition, renal lymph contained higher sodium, although the plasma sodium showed no difference between PAN and controls. High sodium decreased contractility of renal collecting lymphatic vessels. In LECs, high sodium reduced phosphorylated NKCC1 and SPAK, an upstream activating kinase of NKCC1, and eNOS, a downstream effector of lymphatic contractility. The NKCC1 inhibitor furosemide showed a weaker effect on ejection fraction in isolated renal lymphatics of PAN vs controls. High sodium within the renal interstitium following proteinuric injury is associated with impaired renal lymphatic pumping that may, in part, involve the SPAK-NKCC1-eNOS pathway, which may contribute to sodium retention and reduce lymphatic responsiveness to furosemide. We propose that this lymphatic vessel dysfunction is a novel mechanism of impaired interstitial clearance and edema in proteinuric kidney disease.


Assuntos
Injúria Renal Aguda/metabolismo , Endotélio Linfático/citologia , Rim/química , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Puromicina Aminonucleosídeo/efeitos adversos , Sódio/análise , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Injúria Renal Aguda/induzido quimicamente , Animais , Células Cultivadas , Endotélio Linfático/efeitos dos fármacos , Endotélio Linfático/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Água/análise
9.
J Ren Nutr ; 32(1): 10-21, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34666930

RESUMO

OBJECTIVE: Gut flora imbalance characterizes patients with chronic kidney disease (CKD). Although biotic supplementation has been proposed to lessen inflammation and oxidative stress and, thus, reduce the risk of progressive kidney damage and cardiovascular disease, the effects remain controversial. We conducted a meta-analysis to assess the therapeutic benefits of biotics in CKD. METHODS: PubMed, Embase, and Cochrane databases were systematically searched for randomized controlled trials that evaluated any biotic (prebiotic, probiotic, synbiotics) supplements in patients with CKD (CKD, stage 3-4 to end-stage renal disease). Primary endpoints included changes in renal function, markers of inflammation, and oxidative stress. Secondary endpoints included changes in levels of uremic toxins and variations in lipid metabolism. RESULTS: Twenty-three eligible studies included 842 participants. In a pooled-analysis, biotics did not change estimated glomerular filtration rate (mean difference [MD] = 0.08, P = .92) or serum albumin (MD = -0.01, P = .86), although prebiotics reduced serum creatinine (standardized mean difference [SMD] = -0.23, P = .009) and blood urea nitrogen (MD = -6.05, P < .00001). Biotics improved total antioxidative capacity (SMD = 0.37, P = .007) and malondialdehyde (SMD = -0.96, P = .006) and reduced the inflammatory marker interleukin-6 (SMD = -0.30, P = .01) although not C-reactive protein (SMD = -0.22, P = .20). Biotic intervention reduced some uremic toxins, including p-cresol sulfate (SMD = -2.18, P < .0001) and indoxyl sulfate (MD = -5.14, P = .0009), which decreased in dialysis-dependent patients. Another toxin, indole-3-acetic acid (MD = -0.22, P = .63), did not change. Lipids were unaffected by biotic intervention (total cholesterol: SMD = -0.01, P = .89; high-density lipoprotein: SMD = -0.08, P = .76; low-density lipoprotein: MD = 3.54, P = .28; triglyceride: MD = -2.26, P = .58). CONCLUSION: The results highlight the favorable influence of biotics on circulating markers of creatinine, oxidant stress (malondialdehyde, total antioxidative capacity), inflammation (interleukin-6), and uremic toxins (p-cresol sulfate) in patients with CKD. Biotics did not affect estimated glomerular filtration rate, albumin, indole-3-acetic acid, or lipids in either predialysis or dialysis patients.


Assuntos
Insuficiência Renal Crônica , Simbióticos , Humanos , Prebióticos , Ensaios Clínicos Controlados Aleatórios como Assunto , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Toxinas Urêmicas
10.
Kidney Med ; 3(6): 984-991.e1, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34939007

RESUMO

RATIONALE & OBJECTIVE: We aimed to explore the associated factors of endothelial injury in chronic kidney disease (CKD) and the relationship between endothelial dysfunction and CKD prognosis. STUDY DESIGN: A prospective observational cohort study. SETTING & PARTICIPANTS: 77 adults with CKD stages 1-5 were enrolled January 2010 to December 2010 and followed up until December 2015. EXPOSURE: Serum asymmetric dimethylarginine (ADMA) level at baseline, α-klotho, sodium-phosphorus synergistic transporter, and dimethylarginine-dimethylamine hydrolase expression in kidney biopsy samples. OUTCOME: Initiation of kidney replacement therapy (KRT). ANALYTICAL APPROACH: Kaplan-Meier analysis was used for evaluation of the incidence rate of KRT. All tests were 2 tailed, and statistical significance was defined as P < 0.05. RESULTS: Mean serum ADMA level of 77 patients was 64.3 ± 34.6 ng/mL. ADMA level increased with CKD stages (P = 0.06) and declining kidney function (r = -0.267; P = 0.02). The expression of α-klotho in kidney biopsy specimens also decreased. Median follow-up time was 56 (interquartile range, 50.5-62) months. Kaplan-Meier analyses showed that during a total follow-up of 6 years, the incidence of KRT initiation in the high-ADMA group was significantly higher than that in the low group (35.9% vs 13.2%; P = 0.03). ADMA level was negatively correlated with α-klotho (r = -0.233; P = 0.04) and positively correlated with phosphorus level (r = 0.243; P = 0.04). The expression of sodium-phosphorus synergistic transporter in kidney tubules, which promoted phosphorus reabsorption, and the expression of dimethylarginine-dimethylamine hydrolase isoform 1, which regulated ADMA, were decreased. Correlation analysis also showed that ADMA level decreased while age increased at baseline (r = -0.292; P = 0.01). LIMITATIONS: Small sample size with limited longer-term follow-up. CONCLUSIONS: Serum ADMA levels increased as kidney function declined, and high serum ADMA level was associated with incident kidney failure. Low tissue α-klotho and high levels of plasma phosphorus or tissue expression of type II sodium/phosphate cotransporter in the kidney are associated with higher circulating ADMA levels, suggesting that they may be involved in the pathogenesis of endothelial dysfunction in patients with CKD.

11.
Kidney Int ; 100(3): 585-596, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34102217

RESUMO

Kidney disease affects intestinal structure and function. Although intestinal lymphatics are central in absorption and remodeling of dietary and synthesized lipids/lipoproteins, little is known about how kidney injury impacts the intestinal lymphatic network, or lipoproteins transported therein. To study this, we used puromycin aminoglycoside-treated rats and NEP25 transgenic mice to show that proteinuric injury expanded the intestinal lymphatic network, activated lymphatic endothelial cells and increased mesenteric lymph flow. The lymph was found to contain increased levels of cytokines, immune cells, and isolevuglandin (a highly reactive dicarbonyl) and to have a greater output of apolipoprotein AI. Plasma levels of cytokines and isolevuglandin were not changed. However, isolevuglandin was also increased in the ileum of proteinuric animals, and intestinal epithelial cells exposed to myeloperoxidase produced more isolevuglandin. Apolipoprotein AI modified by isolevuglandin directly increased lymphatic vessel contractions, activated lymphatic endothelial cells, and enhanced the secretion of the lymphangiogenic promoter vascular endothelial growth factor-C by macrophages. Inhibition of isolevuglandin synthesis by a carbonyl scavenger reduced intestinal isolevuglandin adduct level and lymphangiogenesis. Thus, our data reveal a novel mediator, isolevuglandin modified apolipoprotein AI, and uncover intestinal lymphatic network structure and activity as a new pathway in the crosstalk between kidney and intestine that may contribute to the adverse impact of kidney disease on other organs.


Assuntos
Vasos Linfáticos , Fator C de Crescimento do Endotélio Vascular , Animais , Apolipoproteína A-I , Células Endoteliais , Rim , Linfangiogênese , Camundongos , Ratos
12.
Kidney Int ; 99(3): 620-631, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33137336

RESUMO

Previously, we found that mild tubulointerstitial injury sensitizes glomeruli to subsequent injury. Here, we evaluated whether stabilization of hypoxia-inducible factor-α (HIF-α), a key regulator of tissue response to hypoxia, ameliorates tubulointerstitial injury and impact on subsequent glomerular injury. Nep25 mice, which express the human CD25 receptor on podocytes under control of the nephrin promotor and develop glomerulosclerosis when a specific toxin is administered were used. Tubulointerstitial injury, evident by week two, was induced by folic acid, and mice were treated with an HIF stabilizer, dimethyloxalylglycine or vehicle from week three to six. Uninephrectomy at week six assessed tubulointerstitial fibrosis. Glomerular injury was induced by podocyte toxin at week seven, and mice were sacrificed ten days later. At week six tubular injury markers normalized but with patchy collagen I and interstitial fibrosis. Pimonidazole staining, a hypoxia marker, was increased by folic acid treatment compared to vehicle while dimethyloxalylglycine stimulated HIF-2α expression and attenuated tubulointerstitial hypoxia. The hematocrit was increased by dimethyloxalylglycine along with downstream effectors of HIF. Tubular epithelial cell injury, inflammation and interstitial fibrosis were improved after dimethyloxalylglycine, with further reduced mortality, interstitial fibrosis, and glomerulosclerosis induced by specific podocyte injury. Thus, our findings indicate that hypoxia contributes to tubular injury and consequent sensitization of glomeruli to injury. Hence, restoring HIFs may blunt this adverse crosstalk of tubules to glomeruli.


Assuntos
Nefropatias , Podócitos , Animais , Fibrose , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Nefropatias/patologia , Glomérulos Renais/patologia , Camundongos
13.
Am J Physiol Renal Physiol ; 319(6): F1027-F1036, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103446

RESUMO

Similar to other organs, renal lymphatics remove excess fluid, solutes, and macromolecules from the renal interstitium. Given the kidney's unique role in maintaining body fluid homeostasis, renal lymphatics may be critical in this process. However, little is known regarding the pathways involved in renal lymphatic vessel function, and there are no studies on the effects of drugs targeting impaired interstitial clearance, such as diuretics. Using pressure myography, we showed that renal lymphatic collecting vessels are sensitive to changes in transmural pressure and have an optimal range of effective pumping. In addition, they are responsive to vasoactive factors known to regulate tone in other lymphatic vessels including prostaglandin E2 and nitric oxide, and their spontaneous contractility requires Ca2+ and Cl-. We also demonstrated that Na+-K+-2Cl- cotransporter Nkcc1, but not Nkcc2, is expressed in extrarenal lymphatic vessels. Furosemide, a loop diuretic that inhibits Na+-K+-2Cl- cotransporters, induced a dose-dependent dilation in lymphatic vessels and decreased the magnitude and frequency of spontaneous contractions, thereby reducing the ability of these vessels to propel lymph. Ethacrynic acid, another loop diuretic, had no effect on vessel tone. These data represent a significant step forward in our understanding of the mechanisms underlying renal lymphatic vessel function and highlight potential off-target effects of furosemide that may exacerbate fluid accumulation in edema-forming conditions.


Assuntos
Rim/anatomia & histologia , Rim/fisiologia , Vasos Linfáticos/fisiologia , Animais , Cálcio/metabolismo , Cloretos/metabolismo , Furosemida/farmacologia , Vasos Linfáticos/efeitos dos fármacos , Masculino , NG-Nitroarginina Metil Éster , Óxido Nítrico/metabolismo , Pressão , Ratos , Ratos Sprague-Dawley , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia
14.
Pediatr Nephrol ; 34(11): 2351-2360, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31230128

RESUMO

BACKGROUND: Although high-density lipoprotein (HDL) modulates many cell types in the cardiovascular system, little is known about HDL in the kidney. We assessed urinary excretion of apolipoprotein AI (apoAI), the main protein in HDL. METHODS: We enrolled 228 children with various kidney disorders and 40 controls. Urinary apoAI, albumin, and other markers of kidney damage were measured using ELISA, apoAI isoforms with Western blot, and renal biopsies stained for apoAI. RESULTS: Patients followed in nephrology clinic had elevated urinary apoAI vs. controls (median 0.074 µg/mg; interquartile range (IQR) 0.0160-0.560, vs. 0.019 µg/mg; IQR 0.004-0.118, p < 0.001). Patients with tubulopathies, renal dysplasia/congenital anomalies of the kidney and urogenital tract, glomerulonephritis, and nephrotic syndrome (NS) in relapse had the greatest elevations (p ≤ 0.01). Patients with NS in remission, nephrolithiasis, polycystic kidney disease, transplant, or hypertension were not different from controls. Although all NS in relapse had higher apoAI excretion than in remission (0.159 vs. 0.0355 µg/mg, p = 0.01), this was largely driven by patients with focal segmental glomerulosclerosis (FSGS). Many patients, especially with FSGS, had increased urinary apoAI isoforms. Biopsies from FSGS patients showed increased apoAI staining at proximal tubule brush border, compared to diffuse cytoplasmic distribution in minimal change disease. CONCLUSIONS: Children with kidney disease have variably increased urinary apoAI depending on underlying disease. Urine apoAI is particularly elevated in diseases affecting proximal tubules. Kidney disease is also associated with high molecular weight (HMW) apoAI isoforms in urine, especially FSGS. Whether abnormal urinary apoAI is a marker or contributor to renal disease awaits further study.


Assuntos
Apolipoproteína A-I/urina , Nefropatias/urina , Túbulos Renais Proximais/patologia , Adolescente , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Biópsia , Criança , Pré-Escolar , Feminino , Humanos , Nefropatias/patologia , Masculino , Peso Molecular , Eliminação Renal , Estudos Retrospectivos
15.
Nephrol Dial Transplant ; 34(12): 2042-2050, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31071225

RESUMO

BACKGROUND: Plasminogen activator inhibitor-1 (PAI-1) expression increases extracellular matrix deposition and contributes to interstitial fibrosis in the kidney after injury. While PAI-1 is ubiquitously expressed in the kidney, we hypothesized that interstitial fibrosis is strongly dependent on fibroblast-specific PAI-1 (fbPAI-1). METHODS: Tenascin C Cre (TNC Cre) and fbPAI-1 knockdown (KD) mice with green fluorescent protein (GFP) expressed within the TNC construct underwent unilateral ureteral obstruction and were sacrificed 10 days later. RESULTS: GFP+ cells in fbPAI-1 KD mice showed significantly reduced PAI-1 expression. Interstitial fibrosis, measured by Sirius red staining and collagen I western blot, was significantly decreased in fbPAI-1 KD compared with TNC Cre mice. There was no significant difference in transforming growth factor ß (TGF-ß) expression or its activation between the two groups. However, GFP+ cells from fbPAI-1 KD mice had lower TGF ß and connective tissue growth factor (CTGF) expression. The number of fibroblasts was decreased in fbPAI-1 KD compared with TNC Cre mice, correlating with decreased alpha smooth muscle actin (α-SMA) expression and less fibroblast cell proliferation. TNC Cre mice had decreased E-cadherin, a marker of differentiated tubular epithelium, in contrast to preserved expression in fbPAI-1 KD. F4/80-expressing cells, mostly CD11c+/F4/80+ cells, were increased while M1 macrophage markers were decreased in fbPAI-1 KD compared with TNC Cre mice. CONCLUSION: These findings indicate that fbPAI-1 depletion ameliorates interstitial fibrosis by decreasing fibroblast proliferation in the renal interstitium, with resulting decreased collagen I. This is linked to decreased M1 macrophages and preserved tubular epithelium.


Assuntos
Fibroblastos/metabolismo , Fibrose/prevenção & controle , Nefropatias/prevenção & controle , Serpina E2/fisiologia , Obstrução Ureteral/complicações , Actinas/metabolismo , Animais , Colágeno Tipo I/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Obstrução Ureteral/metabolismo
16.
J Histochem Cytochem ; 67(9): 623-632, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31116068

RESUMO

Focal segmental glomerulosclerosis (FSGS) presents with scar in parts of some glomeruli and often progresses to global and diffuse glomerulosclerosis. Podocyte injury is the initial target in primary FSGS, induced by a circulating factor. Several gene variants, for example, APOL1, are associated with increased susceptibility to FSGS. Primary FSGS may be due to genetic mutation in key podocyte genes. Increased work stress after loss of nephrons, epigenetic mechanisms, and various profibrotic pathways can contribute to progressive sclerosis, regardless of the initial injury. The progression of FSGS lesions also involves crosstalk between podocytes and other kidney cells, such as parietal epithelial cells, glomerular endothelial cells, and even tubular epithelial cells. New insights related to these mechanisms could potentially lead to new therapeutic strategies to prevent progression of FSGS.


Assuntos
Cicatriz/patologia , Glomerulosclerose Segmentar e Focal/patologia , Glomérulos Renais/patologia , Animais , Apolipoproteína L1/genética , Cicatriz/genética , Progressão da Doença , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Epigênese Genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glomerulosclerose Segmentar e Focal/genética , Humanos , Glomérulos Renais/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Podócitos/metabolismo , Podócitos/patologia
17.
Lab Invest ; 99(8): 1107-1116, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019291

RESUMO

High-density lipoprotein (HDL) and its main protein, apolipoprotein AI (apoAI), have established benefits in various cells, but whether these cytoprotective effects of HDL pertain to renal cells is unclear. We investigated the in vitro consequences of exposing damaged podocytes to normal apoAI, HDL, and apoAI mimetic (L-4F), and the in vivo effects of L-4F on kidney and atherosclerotic injury in a podocyte-specific injury model of proteinuria. In vitro, primary mouse podocytes were injured by puromycin aminonucleoside (PAN). Cellular viability, migration, production of reactive oxygen species (ROS), apoptosis, and the underlying signaling pathway were assessed. In vivo, we used a proteinuric model, Nphs1-hCD25 transgenic (NEP25+) mice, which express human CD25 on podocytes. Podocyte injury was induced by using immunotoxin (LMB2) and generated a proteinuric atherosclerosis model, NEP25+:apoE-/- mice, was generated by mating apoE-deficient (apoE-/-) mice with NEP25+ mice. Animals received L-4F or control vehicle. Renal function, podocyte injury, and atherosclerosis were assessed. PAN reduced podocyte viability, migration, and increased ROS production, all significantly lessened by apoAI, HDL, and L-4F. L-4F attenuated podocyte apoptosis and diminished PAN-induced inactivation of Janus family protein kinase-2/signal transducers and activators of transcription 3. In NEP25+ mice, L-4F significantly lessened overall proteinuria, and preserved podocyte expression of synaptopodin and cell density. Proteinuric NEP25+:apoE-/- mice had more atherosclerosis than non-proteinuric apoE-/- mice, and these lesions were significantly decreased by L-4F. Normal human apoAI, HDL, and apoAI mimetic protect against podocyte damage. ApoAI mimetic provides in vivo beneficial effects on podocytes that culminate in reduced albuminuria and atherosclerosis. The results suggest supplemental apoAI/apoAI mimetic may be a novel candidate to lessen podocyte damage and its complications.


Assuntos
Apolipoproteína A-I/farmacologia , Nefropatias/metabolismo , Podócitos , Substâncias Protetoras/farmacologia , Proteinúria/metabolismo , Animais , Células Cultivadas , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Nefropatias/patologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Lipoproteínas HDL/farmacologia , Camundongos , Camundongos Transgênicos , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Puromicina Aminonucleosídeo/efeitos adversos
18.
Atherosclerosis ; 282: 121-131, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30731284

RESUMO

BACKGROUND AND AIMS: Cardiovascular disease (CVD) is the leading cause of death in chronic kidney disease (CKD) patients, however, the underlying mechanisms that link CKD and CVD are not fully understood and limited treatment options exist in this high-risk population. microRNAs (miRNA) are critical regulators of gene expression for many biological processes in atherosclerosis, including endothelial dysfunction and inflammation. We hypothesized that renal injury-induced endothelial miRNAs promote atherosclerosis. Here, we demonstrate that dual inhibition of endothelial miRNAs inhibits atherosclerosis in the setting of renal injury. METHODS: Aortic endothelial miRNAs were analyzed in apolipoprotein E-deficient (Apoe-/-) mice with renal damage (5/6 nephrectomy, 5/6Nx) by real-time PCR. Endothelial miR-92a-3p and miR-489-3p were inhibited by locked-nucleic acid (LNA) miRNA inhibitors complexed to HDL. RESULTS: Renal injury significantly increased endothelial miR-92a-3p levels in Apoe-/-;5/6Nx mice. Dual inhibition of miR-92a-3p and miR-489-3p in Apoe-/-;5/6Nx with a single injection of HDL + LNA inhibitors significantly reduced atherosclerotic lesion area by 28.6% compared to HDL + LNA scramble (LNA-Scr) controls. To examine the impact of dual LNA treatment on aortic endothelial gene expression, total RNA sequencing was completed, and multiple putative target genes and pathways were identified to be significantly altered, including the STAT3 immune response pathway. Among the differentially expressed genes, Tgfb2 and Fam220a were identified as putative targets of miR-489-3p and miR-92a-3p, respectively. Both Tgfb2 and Fam220a were significantly increased in aortic endothelium after miRNA inhibition in vivo compared to HDL + LNA-Scr controls. Furthermore, Tgfb2 and Fam220a were validated with gene reporter assays as direct targets of miR-489-3p and miR-92a-3p, respectively. In human coronary artery endothelial cells, over-expression and inhibition of miR-92a-3p decreased and increased FAM220A expression, respectively. Moreover, miR-92a-3p overexpression increased STAT3 phosphorylation, likely through direct regulation of FAM220A, a negative regulator of STAT3 phosphorylation. CONCLUSIONS: These results support endothelial miRNAs as therapeutic targets and dual miRNA inhibition as viable strategy to reduce CKD-associated atherosclerosis.


Assuntos
Aterosclerose/complicações , Aterosclerose/genética , Nefropatias/complicações , Nefropatias/genética , MicroRNAs/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aorta/patologia , Linhagem Celular , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Knockout para ApoE , MicroRNAs/metabolismo , Nefrectomia , Proteínas Nucleares/metabolismo , Fenótipo , Fosforilação , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo
19.
Pediatr Nephrol ; 34(10): 1683-1695, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30291429

RESUMO

The strong inverse relationship between low levels of high-density lipoproteins (HDLs) and atherosclerotic cardiovascular disease (CVD) led to the designation of HDL as the "good" cholesterol. The atheroprotection is thought to reflect HDL's capacity to efflux cholesterol from macrophages, followed by interaction with other lipoproteins in the plasma, processing by the liver and excretion into bile. However, pharmacologic increases in HDL-C levels have not led to expected clinical benefits, giving rise to the concept of dysfunctional HDL, in which increases in serum HDL-C are not beneficial due to lost or altered HDL functions and transition to "bad" HDL. It is now understood that the cholesterol in HDL, measured by HDL-C, is neither a marker nor the mediator of HDL function, including cholesterol efflux capacity. It is also understood that besides cholesterol efflux, HDL functionality encompasses many other potentially beneficial functions, including antioxidant, anti-inflammatory, antithrombotic, anti-apoptotic, and vascular protective effects that may be critical protective pathways for various cells, including those in the kidney parenchyma. This review highlights advances in our understanding of the role kidneys play in HDL metabolism, including the effects on levels, composition, and functionality of HDL particles, particularly the main HDL protein, apolipoprotein AI (apoAI). We suggest that normal apoAI/HDL in the glomerular filtrate provides beneficial effects, including lymphangiogenesis, that promote resorption of renal interstitial fluid and biological particles. In contrast, dysfunctional apoAI/HDL activates detrimental pathways in tubular epithelial cells and lymphatics that lead to interstitial accumulation of fluid and harmful particles that promote progressive kidney damage.


Assuntos
Aterosclerose/complicações , Rim/metabolismo , Lipoproteínas HDL/metabolismo , Eliminação Renal , Insuficiência Renal/fisiopatologia , Animais , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Colesterol/metabolismo , Modelos Animais de Doenças , Taxa de Filtração Glomerular/fisiologia , Humanos , Rim/fisiopatologia , Insuficiência Renal/etiologia , Insuficiência Renal/metabolismo
20.
Toxicol Pathol ; 46(8): 944-948, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30157700

RESUMO

Tubular injury sensitizes glomeruli to injury. We review potential mechanisms of this tubuloglomerular cross talk. In the same nephron, tubular injury can cause stenosis of the glomerulotubular junction and finally result in atubular glomeruli. Tubular injury also affects glomerular filtration function through tubuloglomerular feedback. Progenitor cells, that is, parietal epithelial cells and renin positive cells, can be involved in repair of injured glomeruli and also may be modulated by tubular injury. Loss of nephrons induces additional workload and stress on remaining nephrons. Hypoxia and activation of the renin-angiotensin-aldosterone system induced by tubular injury also modulate tubuloglomerular cross talk. Therefore, effective therapies in chronic kidney disease may need to aim to interrupt this deleterious tubuloglomerular cross talk.


Assuntos
Glomérulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Injúria Renal Aguda/complicações , Injúria Renal Aguda/fisiopatologia , Animais , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiopatologia , Túbulos Renais/fisiopatologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...