Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067637

RESUMO

Selective carbon capture from exhaust gas and biogas, which mainly involves the separation of CO2/N2 and CO2/CH4 mixtures, is of paramount importance for environmental and industrial requirements. Herein, we propose an interesting metal-organic framework-based nanotrap, namely ZnAtzCO3 (Atz- = 3-amino-1,2,4-triazolate, CO32- = carbonate), with a favorable ultramicroporous structure and electrostatic interactions that facilitate efficient capture of CO2. The structural composition and stability were verified by FTIR, TGA, and PXRD techniques. Particularly, ZnAtzCO3 demonstrated high CO2 capacity in a wide range of pressures, with values of 44.8 cm3/g at the typical CO2 fraction of the flue gas (15 kPa) and 56.0 cm3/g at the CO2 fraction of the biogas (50 kPa). Moreover, ultrahigh selectivities over CO2/N2 (15:85, v:v) and CO2/CH4 (50:50, v:v) of 3538 and 151 were achieved, respectively. Molecular simulations suggest that the carbon atom of CO2 can form strong electrostatic Cδ+···Î´-O-C interactions with four oxygen atoms in the carbonate ligands, while the oxygen atom of CO2 can interact with the hydrogen atoms in the triazolate ligands through Oδ-···Î´+H-C interactions, which makes ZnAtzCO3 an optimal nanotrap for CO2 fixation. Furthermore, breakthrough experiments confirmed excellent real-world separation toward CO2/N2 and CO2/CH4 mixtures on ZnAtzCO3, demonstrating its great potential for selective CO2 capture.

2.
ACS Appl Mater Interfaces ; 15(35): 41466-41475, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37624731

RESUMO

Recovering light alkanes from natural gas is a critical but challenging process in petrochemical production. Herein, we propose a postmodification strategy via simultaneous metal/ligand exchange to prepare multivariate metal-organic frameworks with enhanced capacity and selectivity of ethane (C2H6) and propane (C3H8) for their recovery from natural gas with methane (CH4) as the primary component. By utilizing the Kuratowski-type secondary building unit of CFA-1 as a scaffold, namely, {Zn5(OAc)4}6+, the Zn2+ metal ions and OAc- ligands were simultaneously exchanged by other transition metal ions and halogen ligands under mild conditions. Inspiringly, this postmodification treatment can give rise to improved capacity for C2H6 and C3H8 without a noticeable increase in CH4 uptake, and consequently, it resulted in significantly enhanced selectivity toward C2H6/CH4 and C3H8/CH4. In particular, by adjusting the species and amount of the modulator, the optimal sample CFA-1-NiCl2-2.3 demonstrated the maximum capacities of C2H6 (5.00 mmol/g) and C3H8 (8.59 mmol/g), increased by 29 and 32% compared to that of CFA-1. Moreover, this compound exhibited excellent separation performance toward C2H6/CH4 and C3H8/CH4, with high uptake ratios of 6.9 and 11.9 at 298 K and 1 bar, respectively, superior to the performance of a majority of the reported MOFs. Molecular simulations were applied to unravel the improved separation mechanism of CFA-1-NiCl2-2.3 toward C2H6/CH4 and C3H8/CH4. Furthermore, remarkable thermal/chemical robustness, moderate isosteric heat, and fully reproducible breakthrough experiments were confirmed on CFA-1-NiCl2-2.3, indicating its great potential for light alkane recovery from natural gas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...