Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(1): e2304782, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649181

RESUMO

Rational designing electrocatalysts is of great significance for realizing high-efficiency H2 production in the water splitting process. Generally, reducing the usage of precious metals and developing low-potential nucleophiles oxidation reaction to replace anodic oxygen evolution reaction (OER) are efficient strategies to promote H2 generation. Here, NiS-coated nickel-carbon nanofibers (NiS@Ni-CNFs) are prepared for low-content Pt deposition (Pt-NiS@Ni-CNFs) to attain the alkaline HER catalyst. Due to the reconfiguration of NiS phase and synergistic effect between Pt and nickel sulfides, the Pt-NiS@Ni-CNFs catalyst shows a high mass activity of 2.74-fold of benchmark Pt/C sample. In addition, the NiS@Ni-CNFs catalyst performs a superior urea oxidation reaction (UOR) activity with the potential of 1.366 V versus reversible hydrogen electrode (RHE) at 10 mA cm-2 , which demonstrates the great potential in the replacement of OER. Thus, a urea-assisted water splitting electrolyzer of Pt-NiS@Ni-CNFs (cathode)||NiS@Ni-CNFs (anode) is constructed to exhibit small voltages of 1.44 and 1.65 V to reach 10 and 100 mA cm-2 , which is much lower than its overall water splitting process, and presents a 6.5-fold hydrogen production rate enhancement. This work offers great opportunity to design new catalysts toward urea-assisted water splitting with significantly promoted hydrogen productivity and reduced energy consumption.

2.
Adv Sci (Weinh) ; 11(7): e2307061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072643

RESUMO

The realization of large-scale industrial application of alkaline water electrolysis for hydrogen generation is severely hampered by the cost of electricity. Therefore, it is currently necessary to synthesize highly efficient electrocatalysts with excellent stability and low overpotential under an industrial-level current density. Herein, Ir-incorporated in partially oxidized Ru aerogel has been designed and synthesized via a simple in situ reduction strategy and subsequent oxidation process. The electrochemical measurements demonstrate that the optimized Ru98 Ir2 -350 electrocatalyst exhibits outstanding hydrogen evolution reaction (HER) performance in an alkaline environment (1 M KOH). Especially, at the large current density of 1000 mA cm-2 , the overpotential is as low as 121 mV, far exceeding the benchmark Pt/C catalyst. Moreover, the Ru98 Ir2 -350 catalyst also displays excellent stability over 1500 h at 1000 mA cm-2 , denoting its industrial applicability. This work provides an efficient route for developing highly active and ultra-stable electrocatalysts for hydrogen generation under industrial-level current density.

3.
J Colloid Interface Sci ; 657: 83-90, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38035422

RESUMO

The development of non-precious metal electrocatalysts for oxygen evolution reaction (OER) is crucial for generating large-scale hydrogen through water electrolysis. In this work, bimetal phosphides embedded in electrospun carbon nanofibers (P-FeNi/CNFs) were fabricated through a reliable electrospinning-carbonization-phosphidation strategy. The incorporation of P-FeNi nanoparticles within CNFs prevented them from forming aggregation and further improved their electron transfer property. The bimetal phosphides helped to weaken the adsorption of O intermediate, promoting the OER activity, which was confirmed by the theoretical results. The as-prepared optimized P-Fe1Ni2/CNFs catalyst exhibited very high OER electrocatalytic performance, which required very low overpotentials of just 239 and 303 mV to reach 10 and 1000 mA cm-2, respectively. It is superior to the commercial RuO2 and many other related OER electrocatalysts reported so far. In addition, the constructed alkaline electrolyzer based on the P-Fe1Ni2/CNFs catalyst and Pt/C delivered a cell voltage of 1.52 V at 10 mA cm-2, surpassing the commercial RuO2||Pt/C (1.61 V) electrolyzer. It also offered excellent alkaline OER performance in simulated seawater electrolyte. This demonstrated its potential for practical applications across a broad range of environmental conditions. Our work provides new ideas for the ration design of highly efficient non-precious metal-based OER catalysts for water electrolysis.

4.
Small ; : e2308311, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072774

RESUMO

Electrocatalytic nitrate reduction to ammonia (NO3 RR) is regarded as a viable alternative reaction to "Haber Bosch" process. Nevertheless, it remains a major challenge to explore economical and efficient electrocatalysts that deliver high NH3 yield rates and Faraday efficiencies (FE). Here, it demonstrates the fabrication of a 3D core-shell structured Co-carbon nanofibers (CNF)/ZIF-CoP for NO3 RR application. Benefitting from the distinct electron transport property of Co-CNF and desirable mass transfer ability from amorphous CoP framework, the as-prepared Co-CNF/ZIF-CoP exhibits large NH3 FE (96.8 ± 3.4% at -0.1 V vs reversible hydrogen electrode (RHE)) and high yield rate (38.44 ± 0.65 mg cm-2 h-1 at -0.6 V vs RHE), which are better than Co-CNF/ZIF-crystal CoP. Density functional theory (DFT) calculations further reveal that amorphous CoP presents a lower energy barrier in the rate determination step of the protonation of *NO to produce *NOH intermediates compared with crystal CoP, resulting in a superior NO3 RR performance. Eventually, an aqueous galvanic Zn-NO3 - battery is assembled by using Co-CNF/ZIF-CoP as cathode material to achieve efficient production of NH3 whilst simultaneously supplying electrical power. This work offers a reliable strategy to construct amorphous metal phosphide framework on conducting CNF as efficient electrocatalyst and enriches its promising application for NO3 RR.

5.
Nanomicro Lett ; 14(1): 219, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355311

RESUMO

Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn2+ uniform deposition. However, strong interactions between the coating and Zn2+ and sluggish transport of Zn2+ lead to high anodic polarization. Here, we present a bio-inspired silk fibroin (SF) coating with amphoteric charges to construct an interface reversible electric field, which manipulates the transfer kinetics of Zn2+ and reduces anodic polarization. The alternating positively and negatively charged surface as a build-in driving force can expedite and homogenize Zn2+ flux via the interplay between the charged coating and adsorbed ions, endowing the Zn-SF anode with low polarization voltage and stable plating/stripping. Experimental analyses with theoretical calculations suggest that SF can facilitate the desolvation of [Zn(H2O)6]2+ and provide nucleation sites for uniform deposition. Consequently, the Zn-SF anode delivers a high-rate performance with low voltage polarization (83 mV at 20 mA cm-2) and excellent stability (1500 h at 1 mA cm-2; 500 h at 10 mA cm-2), realizing exceptional cumulative capacity of 2.5 Ah cm-2. The full cell coupled with ZnxV2O5·nH2O (ZnVO) cathode achieves specific energy of ~ 270.5/150.6 Wh kg-1 (at 0.5/10 A g-1) with ~ 99.8% Coulombic efficiency and retains ~ 80.3% (at 5.0 A g-1) after 3000 cycles.

6.
J Colloid Interface Sci ; 614: 556-565, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35121514

RESUMO

The construction of high-efficiency and low-cost electrocatalysts toward oxygen evolution reaction (OER) to improve the overall water decomposition performance is a fascinating route to deal with the clean energy application. Herein, Fe-doped NiS2 crystals grown on the surface of carbon nanofibers (CNFs) encapsulated with NiFe alloy nanoparticles ((Ni,Fe)S2/NiFe-CNFs) are fabricated through an electrospinning-calcination-vulcanization process, which has been used as a splendid electrocatalyst for OER. Benefitting from the abundant electrochemical active sites from the incorporation of Fe element in NiS2 and the synergistic effect between NiFe-CNFs and surface sulfides, the obtained (Ni,Fe)S2/NiFe-CNFs catalyst exhibits highly electrochemical activities and satisfactory durability toward OER in an alkaline medium with a low overpotential of only 287 mV at a high current density of 30 mA cm-2, and with a little decline in the current retention after 48 h, suggesting its superior OER performance even compared with some noble metal-based electrocatalysts. Additionally, a two-electrode system conducted by using the (Ni,Fe)S2/NiFe-CNFs and commercial Pt/C as electrodes, only needs a cell voltage of 1.54 V to afford 10 mA cm-2 for overall water splitting, which is even much better than the RuO2||Pt/C electrolyzer. This study offers a promising approach to prepare high-efficiency OER catalysts toward overall water splitting.

7.
Anal Chim Acta ; 1144: 122-129, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453789

RESUMO

Two-dimensional (2D) nanomaterials-modified electrodes are good candidates for electrochemical sensing because of their unique ultrathin sheet-like structure and distinctive electrical property. In this work, we have developed a facile sacrificial template-directed mild polymerization process to prepare 2D poly(3,4-ethylenedioxythiophene) (PEDOT) nanosheets. During the polymerization process, V2O5·nH2O nanosheets are used as both sacrificial templates and oxidants, which can not only guide the production of PEDOT nanosheets, but also spontaneously be removed after the reaction. We have demonstrated the usage of the 2D PEDOT nanosheets for electrochemical sensing of iodide ions. The proposed sensor delivers a low detection limit of 0.313 µM (S/N = 3) with a linear range of 1.0-20 µM. Furthermore, the 2D PEDOT-based sensor shows an exciting reproducibility, stability and selectivity for the detection of iodide ions, which can be feasibly applied for the detection in real samples. This study provides a facile route to fabricate 2D conducting polymer-based nanomaterials for efficient electrochemical sensing application.

8.
ACS Appl Mater Interfaces ; 12(1): 1280-1291, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31834776

RESUMO

The rational design of metal-organic framework (MOF)-based materials with a huge specific surface area, high redox activity, and favorable conductivity is currently a hot subject for their potential usage in supercapacitor electrodes. Herein, novel bimetallic MOFs with a flowerlike nanosheet structure grown on the electrospun nanofibers (PPNF@M-Ni MOF, M = Co, Zn, Cu, Fe) have been prepared by controlling the incorporation of various types of metal ions, which display superior electrochemical performance. For example, PPNF@Co-Ni MOF possesses a large specific capacitance of 1096.2 F g-1 (specific capacity of 548.1 C g-1) at 1 A g-1 and excellent rate performance. In addition, an asymmetric solid-state device composed of PPNF@Co-Ni MOF (positive materials) and KOH-activated carbon nanofibers embedded with reduced graphene oxide (negative materials) reaches a maximum energy density of 93.6 Wh kg-1 at the power density of 1600.0 W kg-1 and long cycling life. This work may greatly advance the research toward the design of supported MOF-based electrode materials for a promising prospect in energy conversion and storage.

9.
Anal Chim Acta ; 1056: 125-134, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30797453

RESUMO

Controllable fabrication of novel and uniform noble metal nanoparticles on a specific support with a superior catalytic or electrocatalytic performance is of significantly importance for practical applications. In this report, we demonstrated an effective way to fabricate uniform thin-walled Pd/polypyrrole (PPy) hollow nanotubes. The prepared Pd/PPy hybrid nanotubes exhibited an excellent peroxidase-like activity to oxidize a typical peroxidase substrate such as 3,3',5,5'-tetramethylbenzidine in comparison with traditional Pd/C and Pd black catalysts. The outstanding catalytic activity of the Pd/PPy hybrid nanotubes for peroxidase mimicking could be resulting from their unique hollow characteristic and an interfacial effect between PPy and Pd components. Based on the favorable catalytic property of the Pd/PPy hybrid nanotubes, a convenient and rapid colorimetric way to sensitively determine ascorbic acid has been presented. The detection limit was around 0.062 µM and an excellent selectivity was also achieved. The developed detection system in this study could be extended to the fields of bioscience and biotechnology with promising prospects.

10.
ACS Biomater Sci Eng ; 5(3): 1238-1246, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405643

RESUMO

In the past decade, nanomaterials-based artificial enzymes have emerged as a hot spot in the field of catalysis. However, it is a significant challenge to fabricate functional nanomaterials for multiple-enzyme mimetic activity. In this work, we have presented an efficient catalytic platform to mimic peroxidase, oxidase, and catalase-like activity by Fe3C decorated carbon nanofibers (Fe3C/C NFs). First, polyacrylonitrile nanofibers (PAN NFs) are prepared via an electrospinning technique. Next, an Fe(III)-tannic acid (TA) complex is formed on the surface of PAN NFs through a wet chemical reaction. Finally, Fe3C/C NFs are obtained from the carbonization of the PAN/Fe(III)-TA complex nanofibers. The prepared Fe3C/C NFs show an excellent triple-enzyme mimetic property including peroxidase-like, oxidase-like, and catalase-like activity, which is investigated thoroughly by the colorimetric experiment of the 3,3',5,5'-tetramethyl benzidine oxidation and the degradation of H2O2. Thanks to the superior catalytic performance of Fe3C/C NFs for oxidase mimicking, a facile and colorimetric way to determine glutathione with a high sensitivity and favorable selectivity has been achieved. This work provides an efficient platform for multiple-enzyme mimicking, which may expand their promising applications in biosensing, biomedicine, and environmental technology.

11.
Chem Commun (Camb) ; 54(46): 5827-5830, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29670955

RESUMO

A self-templated approach has been developed for the preparation of FeMnO3 nanoparticles filled in the hollow core of polypyrrole (PPy) nanotubes by an in situ polymerization process accompanied by the etching of FeMnO3 nanofibers. The prepared FeMnO3@PPy nanotubes exhibited a superior peroxidase-like activity. The catalytic reaction system has been used for the sensitive colorimetric detection of glutathione with a low detection limit and good selectivity.


Assuntos
Materiais Biomiméticos/química , Glutationa/sangue , Nanopartículas/química , Nanotubos/química , Polímeros/química , Pirróis/química , Benzidinas/química , Materiais Biomiméticos/síntese química , Catálise , Colorimetria , Compostos Férricos/química , Humanos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Limite de Detecção , Compostos de Manganês/química , Nanofibras/química , Oxirredução , Óxidos/química , Peroxidase/química , Polímeros/síntese química , Pirróis/síntese química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...