Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 598: 217095, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964728

RESUMO

Head and neck squamous cell carcinoma (HNSCC) constitutes a significant global cancer burden, given its high prevalence and associated mortality. Despite substantial progress in survival rates due to the enhanced multidisciplinary approach to treatment, these methods often lead to severe tissue damage, compromised function, and potential toxicity. Thus, there is an imperative need for novel, effective, and minimally damaging treatment modalities. Neoadjuvant treatment, an emerging therapeutic strategy, is designed to reduce tumor size and curtail distant metastasis prior to definitive intervention. Currently, neoadjuvant chemotherapy (NACT) has optimized the treatment approach for a subset of HNSCC patients, yet it has not produced a noticeable enhancement in overall survival (OS). In the contemporary cancer therapeutics landscape, immunotherapy is gaining traction at an accelerated pace. Notably, neoadjuvant immunotherapy (NAIT) has shown promising radiological and pathological responses, coupled with encouraging efficacy in several clinical trials. This potentially paves the way for a myriad of possibilities in treatment de-escalation of HNSCC, which warrants further exploration. This paper reviews the existing strategies and efficacies of neoadjuvant immune checkpoint inhibitors (ICIs), along with potential de-escalation strategies. Furthermore, the challenges encountered in the context of the de-escalation strategies of NAIT are explored. The aim is to inform future research directions that strive to improve the quality of life (QoL) for patients battling HNSCC.

2.
J Nanobiotechnology ; 22(1): 308, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825711

RESUMO

Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.


Assuntos
Adjuvantes Imunológicos , Vacinas Anticâncer , Nanotecnologia , Neoplasias , Vacinas de mRNA , Humanos , Vacinas Anticâncer/imunologia , Nanotecnologia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Animais , Sistemas de Liberação de Medicamentos/métodos , COVID-19/prevenção & controle , Adjuvantes de Vacinas , RNA Mensageiro/genética , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia
3.
Int J Surg ; 110(6): 3680-3700, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38935830

RESUMO

Head and neck squamous cell carcinoma (HNSCC), a prevalent and frequently recurring malignancy, often necessitates surgical intervention. The surgical margin (SM) plays a pivotal role in determining the postoperative treatment strategy and prognostic evaluation of HNSCC. Nonetheless, the process of clinical appraisal and assessment of the SMs remains a complex and indeterminate endeavor, thereby leading to potential difficulties for surgeons in defining the extent of resection. In this regard, we undertake a comprehensive review of the suggested surgical distance in varying circumstances, diverse methods of margin evaluation, and the delicate balance that must be maintained between tissue resection and preservation in head and neck surgical procedures. This review is intended to provide surgeons with pragmatic guidance in selecting the most suitable resection techniques, and in improving patients' quality of life by achieving optimal functional and aesthetic restoration.


Assuntos
Neoplasias de Cabeça e Pescoço , Margens de Excisão , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/cirurgia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/cirurgia , Neoplasias de Cabeça e Pescoço/patologia , Qualidade de Vida
4.
BMC Med Educ ; 24(1): 531, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38741079

RESUMO

BACKGROUND: An urgent need exists for innovative surgical video recording techniques in head and neck reconstructive surgeries, particularly in low- and middle-income countries where a surge in surgical procedures necessitates more skilled surgeons. This demand, significantly intensified by the COVID-19 pandemic, highlights the critical role of surgical videos in medical education. We aimed to identify a straightforward, high-quality approach to recording surgical videos at a low economic cost in the operating room, thereby contributing to enhanced patient care. METHODS: The recording was comprised of six head and neck flap harvesting surgeries using GoPro or two types of digital cameras. Data were extracted from the recorded videos and their subsequent editing process. Some of the participants were subsequently interviewed. RESULTS: Both cameras, set at 4 K resolution and 30 frames per second (fps), produced satisfactory results. The GoPro, worn on the surgeon's head, moves in sync with the surgeon, offering a unique first-person perspective of the operation without needing an additional assistant. Though cost-effective and efficient, it lacks a zoom feature essential for close-up views. In contrast, while requiring occasional repositioning, the digital camera captures finer anatomical details due to its superior image quality and zoom capabilities. CONCLUSION: Merging these two systems could significantly advance the field of surgical video recording. This innovation holds promise for enhancing technical communication and bolstering video-based medical education, potentially addressing the global shortage of specialized surgeons.


Assuntos
COVID-19 , Gravação em Vídeo , Humanos , COVID-19/epidemiologia , Procedimentos de Cirurgia Plástica/educação , Retalhos Cirúrgicos , SARS-CoV-2 , Cabeça/cirurgia , Pescoço/cirurgia
5.
MedComm (2020) ; 5(5): e577, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741888

RESUMO

The study by Rahim et al., focusing on preoperative immunotherapy, highlights the pivotal role of CD8+ T cells within lymph nodes in response to neoadjuvant immunotherapy, suggesting that preserving lymph node integrity could bolster the treatment's efficacy by activating antitumor T cells. This underlines the importance of lymph node preservation and supports the use of immunotherapy as a neoadjuvant approach in cancer treatment.

6.
Life Sci ; 346: 122635, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615745

RESUMO

The signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, resides in the nucleus to regulate genes essential for vital cellular functions, including survival, proliferation, self-renewal, angiogenesis, and immune response. However, continuous STAT3 activation in tumor cells promotes their initiation, progression, and metastasis, rendering STAT3 pathway inhibitors a promising avenue for cancer therapy. Nonetheless, these inhibitors frequently encounter challenges such as cytotoxicity and suboptimal biocompatibility in clinical trials. A viable strategy to mitigate these issues involves delivering STAT3 inhibitors via drug delivery systems (DDSs). This review delineates the regulatory mechanisms of the STAT3 signaling pathway and its association with cancer. It offers a comprehensive overview of the current application of DDSs for anti-STAT3 inhibitors and investigates the role of DDSs in cancer treatment. The conclusion posits that DDSs for anti-STAT3 inhibitors exhibit enhanced efficacy and reduced adverse effects in tumor therapy compared to anti-STAT3 inhibitors alone. This paper aims to provide an outline of the ongoing research and future prospects of DDSs for STAT3 inhibitors. Additionally, it presents our insights on the merits and future outlook of DDSs in cancer treatment.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Neoplasias , Fator de Transcrição STAT3 , Humanos , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Transdução de Sinais/efeitos dos fármacos
7.
J Stomatol Oral Maxillofac Surg ; 125(3S): 101846, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556167

RESUMO

Oral and maxillofacial tumors pose a significant clinical challenge due to their tendency to recur, despite advancements in surgical removal techniques. The jaw's intricate structure further complicates treatments and affects patient quality of life. Consequently, emphasis has shifted towards pharmacological interventions, to potentially reduce invasive surgical procedures. One promising approach targets BRAF mutations, specifically the common V600E mutation. BRAF, a critical protein kinase, regulates cell growth and differentiation via the RAS-RAF-MEK-ERK-MAP kinase pathway. A specific nucleotide change at position 1799, swapping Thymine (T) for Adenine (A), results in the V600E mutation, causing unchecked cell growth. This mutation is common in certain oral and maxillofacial tumors like ameloblastoma. A recent neoadjuvant therapy targeting BRAF, involving the use of dabrafenib and trametinib, has showcased a promising, safe, and effective strategy for organ preservation in the treatment of mandibular ameloblastoma. This convergence of molecular insights and targeted therapies holds the key to managing BRAF-mutated oral and maxillofacial tumors effectively, promising improved patient outcomes.


Assuntos
Ameloblastoma , Mutação , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Ameloblastoma/genética , Ameloblastoma/terapia , Ameloblastoma/diagnóstico , Imidazóis/uso terapêutico , Oximas/uso terapêutico , Piridonas/uso terapêutico , Piridonas/administração & dosagem , Pirimidinonas/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Bucais/terapia , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Terapia Neoadjuvante/métodos , Terapia de Alvo Molecular
8.
J Nanobiotechnology ; 22(1): 135, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553735

RESUMO

The deployment of imaging examinations has evolved into a robust approach for the diagnosis of lymph node metastasis (LNM). The advancement of technology, coupled with the introduction of innovative imaging drugs, has led to the incorporation of an increasingly diverse array of imaging techniques into clinical practice. Nonetheless, conventional methods of administering imaging agents persist in presenting certain drawbacks and side effects. The employment of controlled drug delivery systems (DDSs) as a conduit for transporting imaging agents offers a promising solution to ameliorate these limitations intrinsic to metastatic lymph node (LN) imaging, thereby augmenting diagnostic precision. Within the scope of this review, we elucidate the historical context of LN imaging and encapsulate the frequently employed DDSs in conjunction with a variety of imaging techniques, specifically for metastatic LN imaging. Moreover, we engage in a discourse on the conceptualization and practical application of fusing diagnosis and treatment by employing DDSs. Finally, we venture into prospective applications of DDSs in the realm of LNM imaging and share our perspective on the potential trajectory of DDS development.


Assuntos
Sistemas de Liberação de Medicamentos , Linfonodos , Humanos , Metástase Linfática/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/patologia
9.
Cancer Lett ; 588: 216740, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423247

RESUMO

Lymph node dissection has been a long-standing diagnostic and therapeutic strategy for metastatic cancers. However, questions over myriad related complications and survival outcomes are continuously debated. Immunotherapy, particularly neoadjuvant immunotherapy, has revolutionized the conventional paradigm of cancer treatment, yet has benefited only a fraction of patients. Emerging evidence has unveiled the role of lymph nodes as pivotal responders to immunotherapy, whose absence may contribute to drastic impairment in treatment efficacy, again posing challenges over excessive lymph node dissection. Hence, centering around this theme, we concentrate on the mechanisms of immune activation in lymph nodes and provide an overview of minimally invasive lymph node metastasis diagnosis, current best practices for activating lymph nodes, and the prognostic outcomes of omitting lymph node dissection. In particular, we discuss the potential for future comprehensive cancer treatment with effective activation of immunotherapy driven by lymph node preservation and highlight the challenges ahead to achieve this goal.


Assuntos
Excisão de Linfonodo , Linfonodos , Humanos , Linfonodos/patologia , Prognóstico , Metástase Linfática/patologia , Imunoterapia
10.
Small ; 20(19): e2308731, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38327169

RESUMO

Immunotherapy has emerged as a potent strategy in cancer treatment, with many approved drugs and modalities in the development stages. Despite its promise, immunotherapy is not without its limitations, including side effects and suboptimal efficacy. Using nanoparticles (NPs) as delivery vehicles to target immunotherapy to lymph nodes (LNs) can improve the efficacy of immunotherapy drugs and reduce side effects in patients. In this context, this paper reviews the development of LN-targeted immunotherapeutic NP strategies, the mechanisms of NP transport during LN targeting, and their related biosafety risks. NP targeting of LNs involves either passive targeting, influenced by NP physical properties, or active targeting, facilitated by affinity ligands on NP surfaces, while alternative methods, such as intranodal injection and high endothelial venule (HEV) targeting, have uncertain clinical applicability and require further research and validation. LN targeting of NPs for immunotherapy can reduce side effects and increase biocompatibility, but risks such as toxicity, organ accumulation, and oxidative stress remain, although strategies such as biodegradable biomacromolecules, polyethylene glycol (PEG) coating, and impurity addition can mitigate these risks. Additionally, this work concludes with a future-oriented discussion, offering critical insights into the field.


Assuntos
Imunoterapia , Linfonodos , Nanopartículas , Neoplasias , Imunoterapia/métodos , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Nanopartículas/química , Animais
12.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003450

RESUMO

Fibrosis commonly arises from salivary gland injuries induced by factors such as inflammation, ductal obstruction, radiation, aging, and autoimmunity, leading to glandular atrophy and functional impairment. However, effective treatments for these injuries remain elusive. Transforming growth factor-beta 1 (TGF-ß1) is fundamental in fibrosis, advancing fibroblast differentiation into myofibroblasts and enhancing the extracellular matrix in the salivary gland. The involvement of the SMAD pathway and reactive oxygen species (ROS) in this context has been postulated. Metformin, a type 2 diabetes mellitus (T2DM) medication, has been noted for its potent anti-fibrotic effects. Through human samples, primary salivary gland fibroblasts, and a rat model, this study explored metformin's anti-fibrotic properties. Elevated levels of TGF-ß1 (p < 0.01) and alpha-smooth muscle actin (α-SMA) (p < 0.01) were observed in human sialadenitis samples. The analysis showed that metformin attenuates TGF-ß1-induced fibrosis by inhibiting SMAD phosphorylation (p < 0.01) through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-independent pathways and activating the AMPK pathway, consequently suppressing NADPH oxidase 4 (NOX4) (p < 0.01), a main ROS producer. Moreover, in rats, metformin not only reduced glandular fibrosis post-ductal ligation but also protected acinar cells from ligation-induced injuries, thereby normalizing the levels of aquaporin 5 (AQP5) (p < 0.05). Overall, this study underscores the potential of metformin as a promising therapeutic option for salivary gland fibrosis.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Ratos , Humanos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fibrose , Fibroblastos/metabolismo , Glândulas Salivares/metabolismo
13.
Pharmacol Res ; 198: 106989, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979662

RESUMO

Lymph node metastasis (LNM) significantly impacts the prognosis of cancer patients. Despite significant advancements in diagnostic techniques and treatment modalities, clinical challenges continue to persist in the realm of LNM. These include difficulties in early diagnosis, limited treatment efficacy, and potential side effects and injuries associated with treatment. Nanotheranostics, a field within nanotechnology, seamlessly integrates diagnostic and therapeutic functionalities. Its primary goal is to provide precise and effective disease diagnosis and treatment simultaneously. The development of nanotheranostics for LNM offers a promising solution for the stratified management of patients with LNM and promotes the advancement of personalized medicine. This review introduces the mechanisms of LNM and challenges in its diagnosis and treatment. Furthermore, it demonstrates the advantages and development potential of nanotheranostics, focuses on the challenges nanotheranostics face in its application, and provides an outlook on future trends. We consider nanotheranostics a promising strategy to improve clinical effectiveness and efficiency as well as the prognosis of cancer patients with LNM.


Assuntos
Linfoma , Nanomedicina Teranóstica , Humanos , Metástase Linfática/patologia , Prognóstico , Medicina de Precisão , Estudos Retrospectivos , Linfonodos
14.
Transl Oncol ; 38: 101794, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820473

RESUMO

Cancer remains a major health concern globally. Immune checkpoint inhibitors (ICIs) target co-inhibitory immune checkpoint molecules and have received approval for treating malignancies like melanoma and non-small cell lung cancer. While CTLA-4 and PD-1/PD-L1 are extensively researched, additional targets such as LAG-3, TIGIT, TIM-3, and VISTA have also demonstrated effective in cancer therapy. Combination treatments, which pair ICIs with interventions such as radiation or chemotherapy, amplify therapeutic outcomes. However, ICIs can lead to diverse side effects, and their varies across patients and cancers. Hence, identifying predictive biomarkers to guide therapy is essential. Notably, expression levels of molecules like PD-1, CTLA-4, and LAG-3 have been linked to tumor progression and ICI therapy responsiveness. Recent advancements in drug delivery systems (DDSs) further enhance ICI therapy efficacy. This review explores predominant DDSs for ICI delivery, such as hydrogel, microparticle, and nanoparticle, which offer improved therapeutic effects and reduced toxicity. In summary, we discuss the future of immune therapy focusing on co-inhibitory checkpoint molecules, pinpoint challenges, and suggest avenues for developing efficient, safer DDSs for ICI transport.

15.
J Oral Pathol Med ; 52(8): 766-776, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549038

RESUMO

BACKGROUND: Salivary gland pleomorphic adenoma (SPA) is a common neoplasm of salivary glands that displays remarkable histological diversity. Previous studies have demonstrated the involvement of gene rearrangements and cytoskeleton-remodeling-related myoepithelial cells in SPA tumorigenesis. Cytoskeleton remodeling is necessary for epithelial-mesenchymal transition (EMT), a key process in tumor progression. However, the heterogeneity of tumor cells and cytoskeleton remodeling in SPA has not been extensively investigated. METHODS: An analysis of single-cell RNA sequencing (scRNA-seq) was performed on 27 810 cells from two donors with SPA. Bioinformatic tools were used to assess differentially expressed genes, cell trajectories, and intercellular communications. Immunohistochemistry and double immunofluorescence staining were used to demonstrate FOXC1 and MYLK expression in SPA tissues. RESULTS: Our analysis revealed five distinct cell subtypes within the tumor cells of SPA, indicating a high level of intra-lesional heterogeneity. Cytoskeleton-remodeling-related genes were highly enriched in subtype 3 of the tumor cells, which showed a close interaction with mesenchymal cells. We found that tumoral FOXC1 expression was closely related to MYLK expression in the tumor cells of SPA. CONCLUSION: Tumor cells enriched with cytoskeleton-remodeling-related genes play a crucial role in SPA development, and FOXC1 may partially regulate this process.


Assuntos
Adenoma Pleomorfo , Neoplasias das Glândulas Salivares , Humanos , Adenoma Pleomorfo/patologia , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares/metabolismo , Análise de Sequência de RNA
16.
Semin Cancer Biol ; 95: 52-74, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37473825

RESUMO

Head and neck tumors (HNTs) constitute a multifaceted ensemble of pathologies that primarily involve regions such as the oral cavity, pharynx, and nasal cavity. The intricate anatomical structure of these regions poses considerable challenges to efficacious treatment strategies. Despite the availability of myriad treatment modalities, the overall therapeutic efficacy for HNTs continues to remain subdued. In recent years, the deployment of artificial intelligence (AI) in healthcare practices has garnered noteworthy attention. AI modalities, inclusive of machine learning (ML), neural networks (NNs), and deep learning (DL), when amalgamated into the holistic management of HNTs, promise to augment the precision, safety, and efficacy of treatment regimens. The integration of AI within HNT management is intricately intertwined with domains such as medical imaging, bioinformatics, and medical robotics. This article intends to scrutinize the cutting-edge advancements and prospective applications of AI in the realm of HNTs, elucidating AI's indispensable role in prevention, diagnosis, treatment, prognostication, research, and inter-sectoral integration. The overarching objective is to stimulate scholarly discourse and invigorate insights among medical practitioners and researchers to propel further exploration, thereby facilitating superior therapeutic alternatives for patients.


Assuntos
Inteligência Artificial , Neoplasias de Cabeça e Pescoço , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/terapia , Diagnóstico por Imagem/métodos
17.
BMC Oral Health ; 23(1): 454, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415178

RESUMO

BACKGROUND: Odontogenic keratocyst (OKC) is a relatively common odontogenic lesion characterized by local invasion in the maxillary and mandibular bones. In the pathological tissue slices of OKC, immune cell infiltrations are frequently observed. However, the immune cell profile and the molecular mechanism for immune cell infiltration of OKC are still unclear. We aimed to explore the immune cell profile of OKC and to explore the potential pathogenesis for immune cell infiltration in OKC. METHODS: The microarray dataset GSE38494 including OKC and oral mucosa (OM) samples were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in OKC were analyzed by R software. The hub genes of OKC were performed by protein-protein interaction (PPI) network. The differential immune cell infiltration and the potential relationship between immune cell infiltration and the hub genes were performed by single-sample gene set enrichment analysis (ssGSEA). The expression of COL1A1 and COL1A3 were confirmed by immunofluorescence and immunohistochemistry in 17 OKC and 8 OM samples. RESULTS: We detected a total of 402 differentially expressed genes (DEGs), of which 247 were upregulated and 155 were downregulated. DEGs were mainly involved in collagen-containing extracellular matrix pathways, external encapsulating structure organization, and extracellular structure organization. We identified ten hub genes, namely FN1, COL1A1, COL3A1, COL1A2, BGN, POSTN, SPARC, FBN1, COL5A1, and COL5A2. A significant difference was observed in the abundances of eight types of infiltrating immune cells between the OM and OKC groups. Both COL1A1 and COL3A1 exhibited a significant positive correlation with natural killer T cells and memory B cells. Simultaneously, they demonstrated a significant negative correlation with CD56dim natural killer cells, neutrophils, immature dendritic cells, and activated dendritic cells. Immunohistochemistry analysis showed that COL1A1 (P = 0.0131) and COL1A3 (P < 0.001) were significantly elevated in OKC compared with OM. CONCLUSIONS: Our findings provide insights into the pathogenesis of OKC and illuminate the immune microenvironment within these lesions. The key genes, including COL1A1 and COL1A3, may significantly impact the biological processes associated with OKC.


Assuntos
Cistos Odontogênicos , Tumores Odontogênicos , Humanos , Mucosa Bucal , Cistos Odontogênicos/genética , Biologia Computacional , Microambiente Tumoral
20.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361568

RESUMO

Lymph node metastasis is associated with poor prognosis of oral squamous cell carcinoma (OSCC), and few studies have explored the relevance of postoperative lymphatic drainage (PLD) in metastatic OSCC. Alpha-enolase (ENO1) is a metabolic enzyme, which is related to lymphatic metastasis of OSCC. However, the role of ENO1 in PLD in metastatic OSCC has not been elucidated. Herein, we collected lymphatic drainage after lymphadenectomy between metastatic and non-metastatic lymph nodes in OSCC patients to investigate the relationship between ENO1 expression and metastasis, and to identify the proteins which interacted with ENO1 in PLD of patients with metastatic OSCC by MS/GST pulldown assay. Results revealed that the metabolic protein apolipoprotein C-III (ApoC3) was a novel partner of ENO1. The ENO1 bound to ApoC3 in OSCC cells and elicited the production of interleukin (IL)-8, as demonstrated through a cytokine antibody assay. We also studied the function of IL-8 on Jurkat T cells co-cultured with OSCC cells in vitro. Western blot analysis was applied to quantitate STAT3 (signal transducer and activator of transcription 3) and p-STAT3 levels. Mechanistically, OSCC cells activated the STAT3 signaling pathway on Jurkat T cells through IL-8 secretion, promoted apoptosis, and inhibited the proliferation of Jurkat T cells. Collectively, these findings illuminate the molecular mechanisms underlying the function of ENO1 in metastasis OSCC and provide new strategies for targeting ENO1 for OSCC treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/patologia , Fator de Transcrição STAT3/metabolismo , Apolipoproteína C-III , Interleucina-8/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Metástase Linfática , Fosfopiruvato Hidratase/metabolismo , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Biomarcadores Tumorais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...