Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 244: 117967, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109964

RESUMO

The growing demand for lithium-ion batteries for portable electronics and electric vehicles results in a booming lithium battery market, leading to a concomitant increase in spent graphite. This research investigated the potential impacts of spent graphite on environmental and human health using standardized toxicity extraction and Life Cycle Impact Assessment models. The spent graphite samples were classified as hazardous waste due to the average nickel content of 337.14 mg/L according to Chinese regulations. Besides, cadmium and fluorine were the other elements that exceeded the regulations threshold. Easily ignored aluminum and heavy metal cobalt are other harmful elements according to the results of Life Cycle Impact Assessments. All the metallic harmful elements mainly exist in a transferable state. Thermogravimetry infrared spectrometry coupled with mass spectrometry was employed to recognize the emitted gases and explore gas emission behavior. Inorganic gases of CO, H2S, SO2, SO3, oxynitride, HCl, and fluoride-containing gases were detected. Sulfur-containing gases released from spent graphite were contributed by the residual sulfuric acid after leaching. The correlation between the evolution of emitted gases and the heating schedule was established simultaneously. The research comprehensively illustrates the pollution of spent graphite and provides assistance for the design of green recycling schemes for spent graphite.


Assuntos
Grafite , Metais Pesados , Humanos , Lítio , Reciclagem/métodos , Fontes de Energia Elétrica , Gases
2.
ACS Omega ; 8(20): 18140-18150, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251122

RESUMO

The removal of environmentally harmful S/N is crucial for utilization of high-S petroleum coke (petcoke) as fuels. Gasification of petcoke enables enhanced desulfurization and denitrification efficiency. Herein, petcoke gasification with the mixture of two effective gasifiers (CO2 and H2O) was simulated via reactive force field molecular dynamics (ReaxFF MD). The synergistic effect of the mixed agents on gas production was revealed by altering the CO2/H2O ratio. It was determined that the rise in H2O content could boost gas yield and accelerate desulfurization. Gas productivity reached 65.6% when the CO2/H2O ratio was 3:7. During the gasification, pyrolysis occurred first to facilitate the decomposition of petcoke particles and S/N removal. Desulfurization with the CO2/H2O gas mixture could be expressed as thiophene-S → S → COS → CHOS, thiophene-S → S → HS → H2S. The N-containing components experienced complicated mutual reactions before being transferred into CON, H2N, HCN, and NO. Simulating the gasification process on a molecular level is helpful in capturing the detailed S/N conversion path and reaction mechanism.

3.
Front Aging Neurosci ; 15: 1109914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009459

RESUMO

Background: Previous studies reported inconsistent results regarding association between diabetes mellitus (DM), prediabetes and risk, disease progression of Parkinson's disease (PD). The meta-analysis was made to investigate association between DM, prediabetes and risk, disease progression of PD. Methods: Literatures investigating association between DM, prediabetes and risk, disease progression of PD were searched in these databases: PubMed and Web of Science. Included literatures were published before October 2022. STATA 12.0 software was used to compute odds ratios (ORs)/relative risks (RRs) or standard mean differences (SMDs). Results: DM was associated with a higher risk of PD, compared to non-diabetic participants with a random effects model (OR/RR = 1.23, 95% CI 1.12-1.35, I 2 = 90.4%, p < 0.001). PD with DM (PD-DM) was associated with a faster motor progression compared to PD without DM (PD-noDM) with a fixed effects model (RR = 1.85, 95% CI 1.47-2.34, I 2 = 47.3%, p = 0.091). However, meta-analysis for comparison in change rate of United Rating Scale (UPDRS) III scores from baseline to follow-up time between PD-DM and PD-noDM reported no difference in motor progression between PD-DM and PD-noDM with a random effects model (SMD = 2.58, 95% CI = -3.11 to 8.27, I 2 = 99.9%, p < 0.001). PD-DM was associated with a faster cognitive decline compared to PD-noDM with a fixed effects model (OR/RR = 1.92, 95% CI 1.45-2.55, I 2 = 50.3%, p = 0.110). Conclusions: In conclusion, DM was associated with a higher risk and faster disease decline of PD. More large-scale cohort studies should be adopted to evaluate the association between DM, prediabetes and PD.

5.
Chemosphere ; 307(Pt 3): 136064, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35981622

RESUMO

As a hazardous solid waste rich in carbon and fluorine, spent pot lining (SPL) is a huge threat to sustainable production and environmental security. As abundant carbon and fluorine resources, the use of such valuable components has great practical and economic significance. Based on the environmental concerns and the component characteristics of SPL, coal gangue (CG), the largest output of solid wastes in the coal-producing industry and rich in aluminum and silicon, was introduced in the utilization and detoxification process of SPL in this work. The substance flow of the co-utilization process presents a circular economy and complementary advantages of SPL and CG. Pure regular fibrous silicon carbides were obtained owing to the synergy effect of SPL and CG. Aluminum from CG and SPL was utilized to prepare dawsonite combined with the sodium from the impurities removal process. Pure cryolite was obtained via mixing wastewater from the silicon carbide purification process and the dawsonite extraction process. Almost all components in SPL and CG were converted into valuable products, and no wastewater and residue was discharged. Thus, a sustainable process of trash to treasure and circular economy for treating CG and SPL was established here with environmental and economically friendly characteristics, which gave a new insight into utilizing wastes with complementary advantages.


Assuntos
Carvão Mineral , Resíduos Sólidos , Alumínio , Hidróxido de Alumínio , Carbono , Fluoretos , Flúor , Resíduos Perigosos , Sódio
6.
Waste Manag ; 150: 30-38, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35792439

RESUMO

Recycling spent graphite in spent lithium-ion batteries (LIBs) is crucial for lacking high-quality graphite and environmental protection. Here, an environmentally friendly and economical modified method based on sulfate roasting was proposed to recycle spent graphite via low temperature roasting at 250 °C with sodium fluoride as an assistant additive. Recycling leads to graphite with a high purity of 99.55 % and chemical structures for energy storage. Batteries manufactured in regenerated graphite deliver a high initial charge capacity of 333.9 mAh/g with an initial columbic efficiency of 85.71% and excellent capacity retention of 91.2% after 400 cycles. In addition, the waste produced in the method could be well treated, and by-products 177 g of sodium sulfate would be collected per 1 kg spent graphite and NaF, equivalent to 78.95% of the added amount obtained through wastewater and exhaust gas, respectively. The regenerated sodium fluoride will be re-applied to the recovery spent graphite. The loop-closed method shows great promise for the industrial-scale recycling of spent graphite for energy storage applications.


Assuntos
Grafite , Lítio , Fontes de Energia Elétrica , Lítio/química , Reciclagem , Fluoreto de Sódio , Ácidos Sulfúricos , Temperatura
7.
ACS Omega ; 7(16): 13998-14008, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559204

RESUMO

In order to explore the influence of different chemical demineralizations on coal combustion characteristics and combustion kinetics, five coals subjected to different chemical demineralization processes were investigated via thermogravimetric analysis. The ash contents of clean coal was reduced to 0.1-1.55% after different chemical demineralizations. The ignition temperature of coal decreased by 12-69 °C, and the peak temperature decreased by 7-62 °C. The burnout temperature of clean coal increased by 63 °C after demineralization by NaOH. The adsorption of noncombustible NaOH into the porous structure of TaiXi-3 caused an increase in burnout temperature. Alkali-soluble minerals were proven to have a negative effect on the combustion performance of coal, while acid-soluble minerals had the opposite effect. The combustion kinetics of five kinds of coals at a heating rate of 10 °C/min was investigated. The activation energy of coal obviously changes before and after demineralization (58.39-91.39 kJ mol-1). The activation energy of clean coal is obviously lower than that of raw coal.

8.
ACS Omega ; 7(13): 11101-11113, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35415317

RESUMO

Spent anode graphite, a hazardous solid waste discarded from the recovery of spent lithium-ion batteries (LIBs), had created social and environmental issues but has been scarcely investigated. Thus, a feasible, environmentally friendly, and economical process of low-temperature fluorination roasting and water leaching technology was proposed to regenerate spent graphite anodes. The results showed that the physical and chemical properties of regenerated graphite with a purity of 99.98% reached the graphite anode standard of LIBs and exhibited a stable specific capacity (340.9 mAh/g), capacity retention (68.92% after 470th cycles), and high initial Coulombic efficiency (92.13%), much better than that of waste carbon residue and similar to that of commercial graphite. Then the reaction mechanism and kinetic modeling of fluorination roasting of spent anode material was mainly explored by differential thermogravimetry and nonisothermal analysis methods. The results showed that the complexation and phase-transformation process of non-carbon valuable components in spent anode graphite occurred through three consecutive reactions in the 80-211 °C temperature intervals. The reaction mechanism of the whole process can be kinetically characterized by three successive reactions: third-order chemical reaction, Z-L-T eq, and second-order chemical reaction. Moreover, the thermodynamic functions of the fluorination roasting were calculated by the activated complex theory (transition state), which indicated the process was nonspontaneous. The mechanistic information was in good agreement with thermogravimetric-infrared spectroscopy (TG-IR), electron probe microanalysis, scanning electron microscopy, energy-dispersive spectrometry, and simulation experiments results.

9.
J Hazard Mater ; 404(Pt B): 124120, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068991

RESUMO

Spent carbon cathode (SCC), a hazardous solid waste discharged from the aluminum electrolysis industry, has a serious environmental pollution risk. This study aims to explore an environmental friendly process for dissociating toxic substances and recovering valuable components from SCC. Parameters of molten salt-assisted roasting and water leaching were optimized. A possible dissociation mechanism of toxic substances was proposed. Results showed that 99.12% of cyanide was decomposed and 96.63% of fluoride was leached under optimal conditions. The recovery route of fluoride was designed according to the solution equilibrium chemical calculation and the difference in solubility and particle size between the recovered products. Exhaust gas with a high concentration of CO and CO2 was used for the carbonation of the leaching solution to recover cryolite. Effects of reaction conditions on precipitation mass and phase composition of recovered cryolite were investigated in detail. Characterization results indicated that the crystallinity and particle size of cryolite recovered under optimal conditions were extremely similar to those of commercial products. Finally, NaF and Na2CO3 were separated and recovered via evaporative crystallization combined with selective filtration. This proposed process with circular economy and green chemistry characteristics is expected to recover valuable components while minimizing environmental hazards of SCC.

10.
ACS Omega ; 5(35): 22119-22130, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923770

RESUMO

Nanoscale polyaniline (PANI) is formed on a hierarchical 3D microstructure carbon nanotubes (CNTs)/carbon fiber paper (CFP) substrate via a one-step electrochemical polymerization method. The chemical and structural properties of the binder-free PANI/CNTs/CFP electrode are characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The specific capacitance of PANI/CNTs/CFP tested in a symmetric two-electrode system reaches 731.6 mF·cm-2 (1354.7 F·g-1) at a current density of 1 mA·cm-2 (1.8 A·g-1). The symmetric supercapacitor device demonstrates excellent cycling performance up to 10,000 cycles with a capacitance retention of 81.4% at a current density of 1 mA·cm-2 (1.8 A·g-1). The results demonstrate that the binder-free CNTs/CFP composite is a strong backbone for depositing ultrathin PANI layers at a high mass loading. The hierarchical 3D microstructure PANI/CNTs/CFP provides enough space and transporting channels to form an efficient electrode-electrolyte interface for the supercapacitance reaction. The formed nanoscale PANI film coaxially coated on the sidewalls of CNTs enables efficient charge transfer and a shortened diffusion length. Hence, the utilization efficiency and electrochemical performances of PANI are significantly improved. The rational design strategy of a CNT-based binder-free hierarchical 3D microstructure can be used in preparing various advanced energy-storage electrodes for electrochemical energy-storage and conversion systems.

11.
Water Sci Technol ; 76(7-8): 1687-1696, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28991785

RESUMO

This paper examines a novel method of regenerating saturated activated carbon after adsorption of complex phenolic, polycyclic aromatic hydrocarbons with low energy consumption by using superheated water pretreatment combined with CO2 activation. The effects of the temperature of the superheated water, liquid-solid ratio, soaking time, activation temperature, activation time, and CO2 flow rate of regeneration and adsorption of coal-powdered activated carbon (CPAC) were studied. The results show that the adsorption capacity of iodine values on CPAC recovers to 102.25% of the fresh activated carbon, and the recovery rate is 79.8% under optimal experimental conditions. The adsorption model and adsorption kinetics of methylene blue on regenerated activated carbon (RAC) showed that the adsorption process was in accordance with the Langmuir model and the pseudo-second-order kinetics model. Furthermore, the internal diffusion process was the main controlling step. The surface properties, Brunauer-Emmett-Teller (BET) surface area, and pore size distribution were characterized by Fourier transform infrared spectroscopy (FT-IR) and BET, which show that the RAC possesses more oxygen-containing functional groups with a specific surface area of 763.39 m2 g-1 and a total pore volume of 0.3039 cm3 g-1. Micropores account for 79.8% and mesopores account for 20.2%.


Assuntos
Dióxido de Carbono/química , Carvão Vegetal/química , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Adsorção , Difusão , Cinética , Azul de Metileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água , Poluentes Químicos da Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...