Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 1085665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569316

RESUMO

Molecular generation (MG) via machine learning (ML) has speeded drug structural optimization, especially for targets with a large amount of reported bioactivity data. However, molecular generation for structural optimization is often powerless for new targets. DNA-encoded library (DEL) can generate systematic, target-specific activity data, including novel targets with few or unknown activity data. Therefore, this study aims to overcome the limitation of molecular generation in the structural optimization for the new target. Firstly, we generated molecules using the structure-affinity data (2.96 million samples) for 3C-like protease (3CLpro) from our own-built DEL platform to get rid of using public databases (e.g., CHEMBL and ZINC). Subsequently, to analyze the effect of transfer learning on the positive rate of the molecule generation model, molecular docking and affinity model based on DEL data were applied to explore the enhanced impact of transfer learning on molecule generation. In addition, the generated molecules are subjected to multiple filtering, including physicochemical properties, drug-like properties, and pharmacophore evaluation, molecular docking to determine the molecules for further study and verified by molecular dynamics simulation.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-877210

RESUMO

Objective@#To investigate the effect of silencing the endoplasmic reticulum stress-related protein calnexin on the proliferation, invasion, and migration of tongue squamous cell carcinoma cells. @* Methods @#Calnexin siRNA was transfected into SCC-9 and SCC-25 tongue squamous cell carcinoma cells, and the expression of calnexin was detected by qRT-PCR. The silencing effect of calnexin siRNA was further verified by Western blotting. CCK-8 assay was applied to detect the effect of silencing calnexin on the proliferation of tongue squamous cell carcinoma cells; Transwell assay was used to detect the effect of silencing calnexin on the invasion and migration of tongue squamous cell carcinoma cells.@* Results @#qRT-PCR showed that calnexin siRNA could effectively downregulate the expression of calnexin. Western blot analysis further confirmed the silencing effect of calnexin siRNA on calnexin. The CCK-8 assay showed that silencing calnexin expression on the 4th and 5th days could inhibit the proliferation of tongue squamous cell carcinoma cells, and the difference was statistically significant (P < 0.01). The Transwell assay showed that knockdown of calnexin could inhibit the invasion and migration of tongue squamous cell carcinoma cells (P < 0.001).@*Conclusion@#Knockdown of calnexin can inhibit the proliferation, invasion, and migration of tongue squamous cell carcinoma cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...