Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1323887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410396

RESUMO

Introduction: The pivotal roles of both abundant and rare bacteria in ecosystem function are widely acknowledged. Despite this, the diversity elevational patterns of these two bacterial taxa in different seasons and influencing factors remains underexplored, especially in the case of rare bacteria. Methods: Here, a metabarcoding approach was employed to investigate elevational patterns of these two bacterial communities in different seasons and tested the roles of soil physico-chemical properties in structuring these abundant and rare bacterial community. Results and discussion: Our findings revealed that variation in elevation and season exerted notably effects on the rare bacterial diversity. Despite the reactions of abundant and rare communities to the elevational gradient exhibited similarities during both summer and winter, distinct elevational patterns were observed in their respective diversity. Specifically, abundant bacterial diversity exhibited a roughly U-shaped pattern along the elevation gradient, while rare bacterial diversity increased with the elevational gradient. Soil moisture and N:P were the dominant factor leading to the pronounced divergence in elevational distributions in summer. Soil temperature and pH were the key factors in winter. The network analysis revealed the bacteria are better able to adapt to environmental fluctuations during the summer season. Additionally, compared to abundant bacteria, the taxonomy of rare bacteria displayed a higher degree of complexity. Our discovery contributes to advancing our comprehension of intricate dynamic diversity patterns in abundant and rare bacteria in the context of environmental gradients and seasonal fluctuations.

2.
Oecologia ; 204(1): 59-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091103

RESUMO

Rising temperatures pose a threat to the stability of climate regulation by carbon metabolism in subtropical forests. Although the effects of temperature on leaf carbon metabolism traits in sun-exposed leaves are well understood, there is limited knowledge about its impacts on shade leaves and the implications for ecosystem-climate feedbacks. In this study, we measured temperature response curves of photosynthesis and respiration for 62 woody species in summer (including both evergreen and deciduous species) and 20 evergreen species in winter. The aim was to uncover the temperature dependence of carbon metabolism in both sun and shade leaves in subtropical forests. Our findings reveal that shade had no significant effects on the mean optimum photosynthetic temperatures (TOpt) or temperature range (T90). However, there were decreases observed in mean stomatal conductance, mean area-based photosynthetic rates at TOpt and 25 °C, as well as mean area-based dark respiration rates at 25 °C in both evergreen and deciduous species. Moreover, the respiration-temperature sensitivity (Q10) of sun leaves was higher than that of shade leaves in winter, with the reverse being true in summer. Leaf economics spectrum traits, such as leaf mass per area, and leaf concentration of nitrogen and phosphorus across species, proved to be good predictors of TOpt, T90, mass-based photosynthetic rate at TOpt, and mass-based photosynthetic and respiration rate at 25 °C. However, Q10 was poorly predicted by these leaf economics spectrum traits except for shade leaves in winter. Our results suggest that model estimates of carbon metabolism in multilayered subtropical forest canopies do not necessitate independent parameterization of T90 and TOpt temperature responses in sun and shade leaves. Nevertheless, a deeper understanding and quantification of canopy variations in Q10 responses to temperature are necessary to confirm the generality of temperature-carbon metabolism trait responses and enhance ecosystem model estimates of carbon dynamics under future climate warming.


Assuntos
Ecossistema , Árvores , Temperatura , Árvores/fisiologia , Folhas de Planta/fisiologia , Florestas , Fotossíntese/fisiologia
3.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37847610

RESUMO

Leaf respiration in the light (Rlight) is crucial for understanding the net CO2 exchange of individual plants and entire ecosystems. However, Rlight is poorly quantified and rarely discussed in the context of the leaf economic spectrum (LES), especially among woody species differing in plant functional types (PFTs) (e.g., evergreen vs. deciduous species). To address this gap in our knowledge, Rlight, respiration in the dark (Rdark), light-saturated photosynthetic rates (Asat), leaf dry mass per unit area (LMA), leaf nitrogen (N) and phosphorus (P) concentrations, and maximum carboxylation (Vcmax) and electron transport rates (Jmax) of 54 representative subtropical woody evergreen and deciduous species were measured. With the exception of LMA, the parameters quantified in this study were significantly higher in deciduous species than in evergreen species. The degree of light inhibition did not significantly differ between evergreen (52%) and deciduous (50%) species. Rlight was significantly correlated with LES traits such as Asat, Rdark, LMA, N and P. The Rlight vs. Rdark and N relationships shared common slopes between evergreen and deciduous species, but significantly differed in their y-intercepts, in which the rates of Rlight were slower or faster for any given Rdark or N in deciduous species, respectively. A model for Rlight based on three traits (i.e., Rdark, LMA and P) had an explanatory power of 84.9%. These results show that there is a link between Rlight and the LES, and highlight that PFTs is an important factor in affecting Rlight and the relationships of Rlight with Rdark and N. Thus, this study provides information that can improve the next generation of terrestrial biosphere models (TBMs).


Assuntos
Ecossistema , Plantas , Fotossíntese , Respiração , Transporte de Elétrons , Folhas de Planta , Árvores
4.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2305-2313, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899094

RESUMO

To reveal the variation of leaf nutrient utilization strategies with altitude gradient in subtropical mountain broadleaved trees, 44 species of broadleaved trees at different altitudes (1400, 1600 and 1800 m) in Wuyi Mountains were selected to measure nutrient content, stoichiometric ratio, and nutrient resorption efficiency of green and senescent leaves, and analyzed their allometric growth relationships. The results showed that nitrogen (N) and phosphorus (P) contents in green leaves were significantly higher than those in senescent leaves, which increased with the increases of altitude. The average values of phosphorus resorption efficiency (PRE) and nitrogen resorption efficiency (NRE) were 48.3% and 34.9%, respectively. PRE was significantly higher than NRE. There was no significant difference in nutrient resorption efficiency with altitude. NRE had positive isokinetic growth with and mature leaf N content at low altitude (1400 m) and negative allometry growth with senescent leaf N content at high altitude (1800 m). PRE and N and P contents of senescent leaves had negative isokinetic growth at low altitude (1400 m) and negative allometry growth at high altitudes (1600 and 1800 m). PRE-NRE allometric growth index was 0.95 at each altitude. The nutrient contents of green and senescent leaves increased with the increases of altitude, but altitude did not affect nutrient resorption efficiency. Plants preferred to re-absorbed P from senescent leaves. Nutrient resorption efficiency of leaves at high altitude affected the nutrient status of senescent leaves.


Assuntos
Altitude , Árvores , China , Nitrogênio , Nutrientes , Fósforo , Folhas de Planta
5.
Sci Total Environ ; 903: 166177, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572896

RESUMO

The evergreen broad-leaf forest is subtropical zonal vegetation in China, and its species diversity and stability are crucial for maintaining forest ecosystem functions. The region is generally affected by global changes such as high levels of nitrogen deposition. Therefore, it is critical to determine the adaptation strategies of subtropical dominant species under nitrogen addition. Here, we conducted two-year field experiments with nitrogen addition levels as 0 kg N ha-1 yr-1 (CK), 50 kg N ha-1 yr-1 (LN) and 100 kg N ha-1 yr-1 (HN). We investigated the effects of nitrogen addition on leaf functional traits (including nutrition, structural and physiological characteristics) of five dominant species in subtropical evergreen broad-leaf forest. Results suggested that the effect of nitrogen addition on leaf functional traits was species-specific. Contrary to Rhododendron delavayi and Eurya muricata, Quercus glauca, Schima superba and Castanopsis eyrei all responded more to the HN treatment than LN treatment. Compared to other leaf functional traits, leaf anatomical structure traits had the highest average plasticity (0.246), and the relative effect of leaf photosynthetic property was highest (7.785) under N addition. Among the five species, S. superba was highest in terms of the index of plasticity for leaf functional traits under nitrogen addition, followed by Q. glauca, E. muricata, C. eyrei and R. delavayi. The major leaf functional traits representing the economic spectrum of leaves (LES) showed resource acquisitive strategy (high SLA, LNC, LPC, Pn) and conservative strategy (high LTD, LDMC, C/N) clustering on the opposite ends of the PCA axis. The PCA analysis indicated that species with high leaf plasticity adopt resource acquisitive strategy (S. superba and Q. glauca), whereas species with low leaf plasticity adopt resource conservative strategy (E. muricata, C. eyrei and R. delavayi). In aggregate, resource-acquisitive species benefit from nitrogen addition more than resource-conservative species, suggesting that S. superba and Q. glauca will occupy the dominant position in community succession under persistently elevated nitrogen deposition.

6.
Oecologia ; 202(4): 845-854, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37624444

RESUMO

Cortex radius (CR) and stele radius (SR) are important functional traits associated with the nutrient acquisition and transport functions of fine roots, respectively. However, for developmental and anatomical reasons, the resource acquisition-transport relationship of fine roots is expected to be different for different root orders. To address this issue, critical fine root anatomical traits were examined for the first three orders of roots of 59 subtropical woody plants. Designating the most distal fine roots as order one, SR scaled isometrically with respect to root radius (RR) (i.e., SR ∝ RR1.0) in the three root orders, whereas CR scaled allometrically with respect to RR (i.e., CR ∝ RR>1.0) with the numerical values of scaling exponents increasing significantly with increasing root orders thereby indicating a disproportional increase in CR with increasing root orders. There were also differences between normalized root tissue (CR/RR and SR/RR) and RR in different root orders. A negative isometric relationship (i.e., SR/RR ∝ RR-1.0) existed between SR/RR and RR in three order roots, whereas the allometric exponent between CR/RR and RR increased with root order (from 0.88 to 1.55). Collectively, the data indicate that root anatomical and functional traits change as a function of RR and that these changes need to be considered when modeling fine root resource acquisition-transport functions.

7.
Front Plant Sci ; 14: 1187704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441171

RESUMO

Foliage leaves are the primary photosynthetic organ of the majority of vascular plants, and their area vs. biomass scaling relationships provide valuable insights into the capacity and investment in light interception, which is critical to plant growth and performance. The "diminishing returns" hypothesis (DRH), which is based primarily on data from gymnosperms and angiosperms, posits that leaf (lamina) area scales with leaf dry mass. on average with a scaling exponent less than 1.0. However, it remains uncertain whether DRH applies to ferns or whether ecological factors affect the scaling exponents governing fern leaf morphometrics. To address this issue, 182 individuals of 28 subtropical ferns species were studied at low, medium, and high elevations (i.e., 600 m, 900 m, and 1200 m, respectively) in Mount Wuyi National Park, Jiangxi Province, China. The scaling relationships between leaf area and leaf biomass for individual and total leaf of ferns at different elevations were examined by using standardized major axis regression protocols. Analyses of the 28 fern species (using Blomberg K-value protocols) indicated no phylogenetic biases among the species compositions of the three different elevations. In addition, at the individual plant level, individual leaf area (ILA) did not differ significantly among the three different elevations (P > 0.05). However, individual leaf mass (ILM) was significantly higher at 900m than at 1200m (P < 0.05), resulting in a significantly higher leaf mass per area (LMA) at the 900m elevation than at the 600m and 1200m elevations (P < 0.05). The ILA and ILM at the 900m elevation were significantly higher than at the 600m elevation (P < 0.05). At the species level, ILA and ILM did not differ significantly among the three elevations (P > 0.05). The total leaf area per individual (TLA) did not differ significantly across the different elevations (P > 0.05). However, total leaf mass per individual (TLM) did differ significantly (P < 0.05). At the individual plant level, the scaling exponents for ILA vs. ILM and TLA vs. TLM at the three different elevations were all significantly less than 1.0 (P < 0.05), which was consistent with the DRH. At the species level, the scaling exponents for the ILA vs. ILM were significantly less than 1.0 at the middle and high elevations, but not at the low elevation. The scaling exponents of the TLA and TLM were numerically highest in the middle elevation, and all were less than 1.0 for the three elevations. These results indicate that the scaling relationships of leaf area versus mass of subtropical ferns at different elevations support the DRH hypothesis. The study further informs our understanding of the resource allocation strategies of an ancient and diverse plant lineage.

8.
Front Plant Sci ; 14: 1137487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082346

RESUMO

Carbon absorption capability and morphological traits are crucial for plant leaf function performance. Here, we investigated the five bamboos at different elevations in Wuyi Mountain to clarify how the leaf trait responds to the elevational gradient and drives the photosynthetic capacity variations. The Standardized Major Axis Regression (SMA) analyses and the Structural Equation Model (SEM) are applied to identify how the bamboo leaf trait, including the ratio of leaf width to length (W/L), leaf mass per area (LMA), photosynthesis rates (Pn), leaf nitrogen, and phosphorus concentration (Leaf N and Leaf P) response to elevation environment, and the driving mechanism of Pn changes. Across the five bamboo species, our results revealed that leaf P scaled isometrically with respect to W/L, leaf N scaled allometrically as the 0.80-power of leaf P, and leaf N and leaf P scaled allometrically to Pn, with the exponents of 0.58 and 0.73, respectively. Besides, the SEM result showed altitude, morphological trait (W/L and LMA), and chemical trait (leaf N and leaf P) could together explain the 44% variations of Pn, with a standard total effect value of 70.0%, 38.5%, 23.6% to leaf P, leaf N, and W/L, respectively. The five bamboo species along the different elevational share an isometric scaling relationship between their leaf P and W/L, providing partial support for the general rule and operating between morphological and chemical traits. More importantly, the leaf W/L and leaf P as the main trait that affects leaf area and P utilization in growth and thus drives bamboo leaf photosynthetic capacity variations in different elevations.

9.
Plant Cell Environ ; 45(11): 3205-3218, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029253

RESUMO

The plant economics spectrum describes the trade-off between plant resource acquisition and storage, and sheds light on plant responses to environmental changes. However, the data used to construct the plant economics spectrum comes mainly from seed plants, thereby neglecting vascular non-seed plant lineages such as the ferns. To address this omission, we evaluated whether a fern economics spectrum exists using leaf and root traits of 23 fern species living under three subtropical forest conditions differing in light intensity and nutrient gradients. The fern leaf and root traits were found to be highly correlated and formed a plant economics spectrum. Specific leaf mass and root tissue density were found to be on one side of the spectrum (conservative strategy), whereas photosynthesis rate, specific root area, and specific root length were on the other side of the spectrum (acquisitive strategy). Ferns had higher photosynthesis and respiration rates, and photosynthetic nitrogen-use efficiency under high light conditions and higher specific root area and lower root tissue density in high nutrient environments. However, environmental changes did not significantly affect their resource acquisition strategies. Thus, the plant economics spectrum can be broadened to include ferns, which expands its phylogenetic and ecological implications and utility.


Assuntos
Gleiquênias , Florestas , Nitrogênio , Fotossíntese/fisiologia , Filogenia , Folhas de Planta/fisiologia , Plantas
10.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1207-1214, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35730078

RESUMO

Based on the distribution records of Cunninghamia lanceolata, we used the maximum Entropy (MaxEnt) model and geographic information system (GIS) methods, combined with environmental factors such as climate and terrain, to predict the potential distribution areas suitable for C. lanceolata under current and future climate scenarios. The results showed that annual precipitation was the most important factor driving the distribution of C. lanceolata. Under the current climate scenario, the total area of suitable for C. lanceolata growth was about 3.28 million km2, accounting for about 34.5% of the total land area of China. Among all the suitable areas, the lowly, intermediately, and highly suitable areas accounted for 18.3%, 29.7% and 52.0% of the total, respectively. Under future climate scenarios, the suitable area of C. lanceolata would increase, showing a clear trend of northward expansion in China. A concentrated and contiguous distribution region highly suitable for C. lanceolata would appear in the humid subtropical areas of southern China. The model was tested by the receiver operating characteristic curve (ROC). The average area under the curve of ROC of the training set was 0.91, showing high reliability.


Assuntos
Mudança Climática , Cunninghamia , China , Ecossistema , Entropia , Previsões , Reprodutibilidade dos Testes
11.
Ying Yong Sheng Tai Xue Bao ; 33(2): 337-343, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35229506

RESUMO

Both nitrogen (N) and phosphorus (P) are the main limiting elements for plant growth in terrestrial ecosystems. Fine roots play a critical role in plant growth. To reveal the effects of combined N and P addition on fine root traits of Machilus pauhoi, we performed a field N and P addition experiment in the midmonth from April to September in 2016 and 2017 in a 3-year M. pauhoi forest (N and P supply ratios were 8:1, 10:1, 12:1, 15:1). Both fine root morphological traits (specific root length, specific root area, average diameter, root tissue density) and stoichiometric traits (total carbon content, total nitogen content and carbon-nitrogen ratio) were analyzed. The results showed that the effects of combined application of N and P on fine root raits varied with seasons. In June, fertilization significantly increased specific root area, total nitrogen content and specific root length of 0-1 mm fine root, but decreased root tissuse density, carbon-nitrogen ratio and average diameter of 0-1 mm root. The most obvious change of fine root traits in June was found under the treatment with a N and P supply ratio of 12:1. In December, combined N and P addition significantly increased root tissue density, total nitrogen content, carbon-nitrogen ratio as well as fine root biomass with the diameter of 0-1 mm. The results of principal component analysis showed that different N and P supply ratios exerted different effects on the relationships among fine root traits. Fine root traits were distributed at both ends of Axis 1 when treated with 12:1 N:P, while distributed at Axis 1 and Axis 2 under other treaments. There was a significant negative correlation between fine root average diameter variation and the relative plant growh rate. The relationship among fine root traits, and between fine root traits and the relative growth rate of plant biomass were optimally coordinated at the treament with a N:P ratio of 12:1.


Assuntos
Nitrogênio , Fósforo , Biomassa , Ecossistema , Florestas , Nitrogênio/análise , Raízes de Plantas , Solo
12.
Ying Yong Sheng Tai Xue Bao ; 33(1): 25-32, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35224922

RESUMO

Trees are characterized with selective absorption of different forms of nitrogen. Ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are the main forms of nitrogen for plant absorption. We examined the differences of absorption between NH4+-N and NO3--N for 1-year-old Machilus pauhoi seedlings planted in local hilly red soil in a pot experiment. A controlled experiment with 7 different NH4+-N/NO3--N treatments was conducted, to study the effects of nitrogen forms and different NH4+-N/NO3--N ratios on the growth and leaf traits of M. pauhoi seedlings. The results showed that there were no significant differences in the relative growth rate of ground diameter (GD), plant height (TH), and biomass (RGR) of M. pauhoi seedlings with different NH4+-N/NO3--N ratios for four months, but these parameters were relatively high under the treatment of NH4+-N:NO3--N=5:5. The seedlings of M. pauhoi didn't show obvious preference for NH4+-N and NO3--N in short term. The extremely low NH4+-N/NO3--N ratio application was unsuitable for their growth. Different NH4+-N/NO3--N application had significant effects on leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf relative water content (LRWC), net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), water use efficiency (WUE), and photosynthetic nitrogen use efficiency (PNUE). M. pauhoi seedlings under the treatment of NH4+-N:NO3--N=1:9 had the highest LA, SLA, Pn, WUE and PNUE. However, the seedlings under the treatment of NH4+-N:NO3--N=9:1 had the lowest LDMC, leaf tissue density (LTD), LRWC and Ci. Different NH4+-N/NO3--N combined application did not affect leaf nitrogen content (LN) and leaf phosphorus content (LP), which were highest under the treatment of NH4+-N:NO3--N=5:5. Across different NH4+-N/NO3--N combined treatments, GD, TH, and RGR were significantly negatively correlated with SLA, while both GD and RGR were significantly negatively correlated with PNUE. Our results could provide theoretical basis for precise nutrient management and high-efficiency cultivation techniques during the seedling stage of the M. pauhoi.


Assuntos
Compostos de Amônio , Lauraceae , Nitratos , Nitrogênio , Folhas de Planta , Plântula
13.
Hortic Res ; 92022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35178562

RESUMO

Sapindus mukorossi is an environmentally friendly plant and renewable energy source whose fruit has been widely used for biomedicine, biodiesel, and biological chemicals due to its richness in saponin and oil contents. Here, we report the first chromosome-scale genome assembly of S. mukorossi (covering ~391 Mb with a scaffold N50 of 24.66 Mb) and characterize its genetic architecture and evolution by resequencing 104 S. mukorossi accessions. Population genetic analyses showed that genetic diversity in the southwestern distribution area was relatively higher than that in the northeastern distribution area. Gene flow events indicated that southwest species may be the donor population for the distribution areas in China. Genome-wide selective sweep analysis showed that a large number of genes are involved in defense responses, growth and development, including SmRPS2, SmRPS4, SmRPS7, SmNAC2, SmNAC23, SmNAC102, SmWRKY6, SmWRKY26, and SmWRKY33. We also identified several candidate genes controlling six agronomic traits by genome-wide association studies, including SmPCBP2, SmbHLH1, SmCSLD1, SmPP2C, SmLRR-RKs, and SmAHP. Our study not only provides a rich genomic resource for further basic research on Sapindaceae woody trees but also identifies several economically significant genes for genomics-enabled improvements in molecular breeding.

14.
Front Plant Sci ; 12: 692484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367215

RESUMO

Sapindus mukorossi Gaertn., an important oleaginous woody plant, has garnered increasing research attention owing to its potential as a source of renewable energy (biodiesel). Leaf structural traits are closely related to plant size, and they affect the fruit yield and oil quality. However, plant size factors that predominantly contribute to leaf structural traits remain unknown. Therefore, the purpose of this study was to understand the associations between leaf structural traits and plant size factors in even-aged stands of S. mukorossi. Results showed that leaf length (LL) and leaf area (LA) markedly increased with the increasing diameter at breast height (DBH) and tree height (TH), although other leaf structural traits did not show noticeable changes. Difference in slopes also indicated that the degree of effect of plant size factors on leaf structural traits was in the order of TH > DBH. Leaf structural traits showed no systematic variation with crown width (CW). LA was significantly positively correlated with LL, leaf width (LW), LL/LW, and leaf thickness (LT) and was significantly but negatively correlated with leaf tissue density (LTD) and leaf dry mass content (LDMC). Specific leaf area showed a significantly negative correlation with LT, LDMC, and LTD. LTD showed a significantly positive correlation with LDMC, but a negative correlation with LT. The results were critical to understand the variability of leaf structural traits with plant size, can provide a theoretical foundation for further study in the relationship between leaf structural traits and fruit yield, and regulate leaf traits through artificial management measures to promote plant growth and fruit yield.

15.
Am J Bot ; 108(3): 423-431, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33792045

RESUMO

PREMISE: Photosynthetic light-response (PLR) curves for leaves are important components of models related to carbon fixation in forest ecosystems, linking the Mitscherlich equation and Michaelis-Menten equation to traits of the leaf economics spectrum (LES). However, models do not consider changes in leaf habits (i.e., evergreen and deciduous) and within-canopy shading variation in these PLR curves. METHODS: Here, we measured the PLR curves in sun and shade leaves of 44 evergreen and 31 deciduous species to examine the relationships between variables of the Mitscherlich equation and Michaelis-Menten equation, leaf nitrogen (N) and phosphorus (P) content, and leaf mass per area (LMA). RESULTS: Small changes were caused by different leaf habits and shade variations in relationships linking variables of the two equations to leaf N and P content and LMA. Values of the scaling exponents for PLR curve parameters did not differ regardless of canopy position and leaf habit (P > 0.05). The PLR curves in species with different leaf habits (i.e., evergreen and deciduous) at different canopy positions could be predicted using the general allometric relations between leaf traits and PLR parameters in the two equations. For photosynthetic photon flux densities from 0 to 2000 µmol m-2 s-1 , approximately 71% (Mitscherlich equation) and 70% (Michaelis-Menten equation) of the net assimilation rates could be predicted. CONCLUSIONS: These findings indicate that leaf net assimilation rates can be predicted through the large available data for LES traits. Incorporation of values for these traits available in the LES databases into ecosystem models of forest productivity and carbon fixation warrants further investigation.


Assuntos
Ecossistema , Árvores , Florestas , Hábitos , Fotossíntese , Folhas de Planta
16.
Ying Yong Sheng Tai Xue Bao ; 32(4): 1193-1200, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33899387

RESUMO

Nutrient resorption is an important strategy of nutrient conservation, which reflecting the ability of plants to conserve and utilize nutrients and adapt to environment. To explore the relationship between nutrient content and nutrient resorption of broadleaved woody species of different life forms (i.e., evergreen vs. deciduous), we sampled 30 broadleaved woody species in subtropical region of China located in Yangjifeng National Nature Reserve, Jiangxi Province. The nitrogen (N) and phosphorus (P) concentrations in green and senescent leaves of each species were measured to calculate nutrient resorption efficiency. Furthermore, we analyzed the relationship of leaf nutrient concentration and resorption efficiency for the different life forms. The results showed that N and P concentrations in green leaves were significantly higher in deciduous trees than those in evergreen trees. The P concentrations of senescent leaves in deciduous woody species was significantly higher than that in evergreen woody species. There was no significant difference of N concentration in senescent leaves between evergreen and deciduous species. Nitrogen resorption efficiency (NRE) and phosphorus resorption efficiency (PRE) of the 30 broadleaved woody species were 49.6% and 50.9%, respectively. There were no significant differences between the NRE and PRE of evergreen and deciduous species. NRE and PRE negatively correlated with N and P concentrations in senescent leaves, respectively. Additionally, evergreen and deciduous species showed similar relationships between nutrient resorption efficiency and nutrient concentration in senescent leaves. The sca-ling exponent of allometric relationship between NRE and PRE was 1.18 across all the species. The nutrient resorption efficiency of all the species were affected by the nutrient status of the senesced leaves. Plants examined in this study generally re-absorbed P from senescing leaves than N.


Assuntos
Nitrogênio , Fósforo , China , Folhas de Planta , Plantas , Árvores
17.
Front Plant Sci ; 12: 778045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082808

RESUMO

Climate change could negatively alter plant ecosystems if rising temperatures exceed optimal conditions for obtaining carbon. The acclimation of plants to higher temperatures could mitigate this effect, but the potential of subtropical forests to acclimate still requires elucidation. We used space-for-time substitution to determine the photosynthetic and respiratory-temperature response curves, optimal temperature of photosynthesis (T opt), photosynthetic rate at T opt, temperature sensitivity (Q 10), and the rate of respiration at a standard temperature of 25°C (R 25) for Pinus taiwanensis at five elevations (1200, 1400, 1600, 1800, and 2000 m) in two seasons (summer and winter) in the Wuyi Mountains in China. The response of photosynthesis in P. taiwanensis leaves to temperature at the five elevations followed parabolic curves, and the response of respiration to temperature increased with temperature. T opt was higher in summer than winter at each elevation and decreased significantly with increasing elevation. Q 10 decreased significantly with increasing elevation in summer but not winter. These results showed a strong thermal acclimation of foliar photosynthesis and respiration to current temperatures across elevations and seasons, and that R 25 increased significantly with elevation and were higher in winter than summer at each elevation indicating that the global warming can decrease R 25. These results strongly suggest that this thermal acclimation will likely occur in the coming decades under climate change, so the increase in respiration rates of P. taiwanensis in response to climatic warming may be smaller than predicted and thus may not increase atmospheric CO2 concentrations.

18.
Ecol Evol ; 10(23): 13395-13402, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304546

RESUMO

Understanding the scaling between leaf size and leafing intensity (leaf number per stem size) is crucial for comprehending theories about the leaf costs and benefits in the leaf size-twig size spectrum. However, the scaling scope of leaf size versus leafing intensity changes along the twig leaf size variation in different leaf habit species remains elusive. Here, we hypothesize that the numerical value of scaling exponent for leaf mass versus leafing intensity in twig is governed by the minimum leaf mass versus maximum leaf mass (M min versus M max) and constrained to be ≤-1.0. We tested this hypothesis by analyzing the twigs of 123 species datasets compiled in the subtropical mountain forest. The standardized major axis regression (SMA) analyses showed the M min scaled as the 1.19 power of M max and the -α (-1.19) were not statistically different from the exponents of M min versus leafing intensity in whole data. Across leaf habit groups, the M max scaled negatively and isometrically with respect to leafing intensity. The pooled data's scaling exponents ranged from -1.14 to -0.96 for M min and M max versus the leafing intensity based on stem volume (LIV). In the case of M min and M max versus the leafing intensity based on stem mass (LIM), the scaling exponents ranged from -1.24 to -1.04. Our hypothesis successfully predicts that the scaling relationship between leaf mass and leafing intensity is constrained to be ≤-1.0. More importantly, the lower limit to scaling of leaf mass and leafing intensity may be closely correlated with M min versus M max. Besides, constrained by the maximum leaf mass expansion, the broad scope range between leaf size and number may be insensitive to leaf habit groups in subtropical mountain forest.

19.
Front Plant Sci ; 11: 735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595665

RESUMO

The leaf economics spectrum (LES) characterizes multivariate correlations that confine the global diversity of leaf functional traits onto a single axis of variation. Although LES is well established for traits of sun leaves, it is unclear how well LES characterizes the diversity of traits for shade leaves. Here, we evaluate LES using the sun and shade leaves of 75 woody species sampled at the extremes of a within-canopy light gradient in a subtropical forest. Shading significantly decreased the mean values of LMA and the rates of photosynthesis and dark respiration, but had no discernable effect on nitrogen and phosphorus content. Sun and shade leaves manifested the same relationships among N mass, P mass, A mass, and R mass (i.e., the slopes of log-log scaling relations of LES traits did not differ between sun and shade leaves). However, the difference between the normalization constants of shade and sun leaves was correlated with functional trait plasticity. Although the generality of this finding should be evaluated further using larger datasets comprising more phylogenetically diverse taxa and biomes, these findings support a unified LES across shade as well as sun leaves.

20.
AoB Plants ; 12(3): plaa021, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537118

RESUMO

A general relationship between the nitrogen (N) and phosphorus (P) content of all plant organs (e.g. leaf, stem, and root) is hypothesized to exist according to whole-plant economics spectrum (PES) theory, but the evidence supporting these expected patterns remains scarce. We measured the N and P content of the leaves, twigs and fine roots of 64 species in three different forest communities along an elevational gradient (evergreen broad-leaved forest, 1319 m a.s.l., coniferous and broad-leaved mixed forest, 1697 m a.s.l., and deciduous forest, 1818 m a.s.l.) in the Wuyishan National Nature Reserve, southeastern China. The scaling relationship between the N and P content and the linear regression relationship between the N:P ratio and N and P content were analysed. The leaf N and P content was significantly higher at the high-elevation site than at the low- or middle-elevation sites (P < 0.001). The N and P content followed a power-law relationship with similar scaling slopes between organs. The N (common slope, 1.13) and P (common slope, 1.03) content isometrically covaried among leaves, twigs and roots. The scaling exponents of the N-P relationship were not significantly different from 1.0 in all organs, with a common slope of 1.08. The scaling constants of N-P decreased significantly (P < 0.05) from the highest value in fine roots (ß = 1.25), followed by leaves (ß = 1.17), to the lowest value in twigs (ß = 0.88). Standardized major axis (SMA) analyses and comparisons of 95 % confidence intervals also showed that the numerical values of the scaling slopes and the scaling constants did not differ regardless of elevation. The N content, but not the P content, accounted for a large proportion of the variation in the N:P ratio in leaves (N:P and N: r 2 = 0.31, F = 33.36, P < 0.001) and fine roots (N:P and N: r 2 = 0.15, F = 10.65, P < 0.05). In contrast, the N:P ratio was significantly related to both the N and P content in the twigs (N:P and N: r 2 = 0.20, F = 17.86, P < 0.001; N:P and P: r 2 = 0.34, F = 35.03, P < 0.001, respectively). Our results indicate that different organs of subtropical woody plants share a similar isometric scaling relationship between their N and P content, providing partial support for the PES hypothesis. Moreover, the effects of the N and P content on the N:P ratio differ between metabolic organs (leaves and fine roots) and structural organs (twigs), elucidating the stoichiometric regulatory mechanism of different organs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...