Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(13): 3430-3437, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856527

RESUMO

As a promising nondestructive testing (NDT) technique with a very adaptive physical modeling of wave transmission process, terahertz technology is used for the detection and characterization of nonpolar materials and the evaluation of layered and/or defective structures. THz-TDS can also be used to perform spectroscopic analysis and detect structural defects in thermal barrier coatings (TBCs) of aero-engines. Although it is generally difficult to measure the structure of the thin oxide layer of the thermal barrier coatings whose thickness is generally lower than 30 µm (the current axial resolution of the THz-TDS cannot exceed 30 µm). We were able to complete the detection of the oxide layer within 1-29 µm through simulation by using the SWT-BP algorithm. In this study, the analysis was performed on real-world samples, the fitting degree of the SWT-BP algorithm reached 0.77, and the minimum prediction error was less than 0.1 µm. The paper also put forward some improvement measures about the experimental results.

2.
Biosens Bioelectron ; 251: 116126, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367565

RESUMO

Electromagnetic metamaterials feature the capability of squeezing photons into hotspot regions of high intensity near-field enhancement for strong light-matter interaction, underpinning the next generation of emerging biosensors. However, randomly dispersed biomolecules around the hotspots lead to weak interactions. Here, we demonstrate an all-silicon dielectric terahertz metamaterial sensor design capable of passively trapping biomoleculars into the resonant cavities confined with powerful electric field. Specifically, multiple controllable high-quality factor resonances driven by bound states in the continuum (BIC) are realized by employing longitudinal symmetry breaking. The dielectric metamaterial sensor with nearly 15.2 experimental figure-of-merit enabling qualitative and quantitative identification of different amino acids by delivering biomolecules to the hotspots for strong light-matter interactions. It is envisioned that the presented strategy will enlighten high-performance meta-sensors design from microwaves to visible frequencies, and serve as a potential platform for microfluidic sensing, biomolecular capture, and sorting devices.


Assuntos
Técnicas Biossensoriais , Aminoácidos , Movimento Celular , Eletricidade , Microfluídica
3.
Biomimetics (Basel) ; 9(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38248614

RESUMO

In response to the need for multiple complete bearing degradation datasets in traditional deep learning networks to predict the impact on individual bearings, a novel deep learning-based rolling bearing remaining life prediction method is proposed in the absence of fully degraded bearng data. This method involves processing the raw vibration data through Channel-wise Attention Encoder (CAE) from the Encoder-Channel Attention (ECA), extracting features related to mutual correlation and relevance, selecting the desired characteristics, and incorporating the selected features into the constructed Autoformer-based time prediction model to forecast the degradation trend of bearings' remaining time. The feature extraction method proposed in this approach outperforms CAE and multilayer perceptual-Attention Encoder in terms of feature extraction capabilities, resulting in reductions of 0.0059 and 0.0402 in mean square error, respectively. Additionally, the indirect prediction approach for the degradation trend of the target bearing demonstrates higher accuracy compared to Informer and Transformer models, with mean square error reductions of 0.3352 and 0.1174, respectively. This suggests that the combined deep learning model proposed in this paper for predicting rolling bearing life may be a more effective life prediction method deserving further research and application.

4.
Sensors (Basel) ; 23(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960609

RESUMO

Dynamic characteristics play a crucial role in evaluating the performance of weight sensors and are essential for achieving fast and accurate weight measurements. This study focuses on a weight sensor based on optical coherence displacement. Using finite element analysis, the sensor was numerically simulated. Frequency domain and time domain dynamic response characteristics were explored through harmonic response analysis and transient dynamic analysis. The superior dynamic performance and reduced conditioning time of the non-contact optical coherence-based displacement weight sensor were confirmed via a negative step response experiment that compared the proposed sensing method to strain sensing. Moreover, dynamic performance metrics for the optical coherence displacement-type weight sensor were determined. Ultimately, the sensor's dynamic performance was enhanced using the pole-zero placement method, decreasing the overshoot to 4.72% and reducing the response time to 0.0132 s. These enhancements broaden the sensor's operational bandwidth and amplify its dynamic response capabilities.

5.
Nanoscale ; 15(48): 19514-19521, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37987537

RESUMO

Multidomain dynamic manipulations for terahertz (THz) absorbers usually necessitate the orchestrated actions of several active elements, inevitably complicating the structural design and elongating the modulation time. Herein, we utilize the coupling between the total reflection prism and electrically-driven MoS2 to activate a tight field confinement in a deep-subwavelength interlayer, ultimately achieving frequency-agile absorption adjustments only with a gate voltage. Theoretical and simulation analysis results indicate that the redistributed electric field and susceptible dielectric response are attributed to the limited spatial near-field perturbation of surface plasmon resonances. We also demonstrate that perturbed MoS2 plasmon modes promote the formation of dual-phase singularities, significantly suppressing the attenuation of the absorption amplitude as large-scale frequency shifts, thereby extending the relative tuning range (WRTR) to 175.4%. These findings offer an efficient approach for expanding the horizon of THz absorption applications that require ultra-broadband and swift-response capabilities.

6.
Materials (Basel) ; 16(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37895684

RESUMO

Biomimetic structures are inspired by elegant and complex architectures of natural creatures, drawing inspiration from biological structures to achieve specific functions or improve specific strength and modulus to reduce weight. In particular, the rapid closure of a Venus flytrap leaf is one of the fastest motions in plants, its biomechanics does not rely on muscle tissues to produce rapid shape-changing, which is significant for engineering applications. Composites are ubiquitous in nature and are used for biomimetic design due to their superior overall performance and programmability. Here, we focus on reviewing the most recent progress on biomimetic Venus flytrap structures based on smart composite technology. An overview of the biomechanics of Venus flytrap is first introduced, in order to reveal the underlying mechanisms. The smart composite technology was then discussed by covering mainly the principles and driving mechanics of various types of bistable composite structures, followed by research progress on the smart composite-based biomimetic flytrap structures, with a focus on the bionic strategies in terms of sensing, responding and actuation, as well as the rapid snap-trapping, aiming to enrich the diversities and reveal the fundamentals in order to further advance the multidisciplinary science and technological development into composite bionics.

7.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688041

RESUMO

The phenomena of variability and interference in the natural frequencies of weight-sensing structures applied in complex working conditions must solve the problem of reducing or eliminating resonance under low-frequency vibrations to maximize stability, accuracy and reliability. The influence laws of the additional mass with relevant characteristics on the natural frequencies, which include the components of mass, stiffness and center-of-mass distribution, etc. Firstly, the theoretical formulas of the mathematical model are given based on different characteristics of the weight-sensing structure, and various combinations of additional masses on the weight-sensing structures are adjusted in the X-, Y-, and Z-directions. The key factors to be specifically considered in the theoretical formulas are discussed through simulation analysis and experimental validation. Secondly, the locking strength of the fastening screws of some components was changed, and another component was placed on the experimental platform in the experiment. The results show that the mass, center-of-mass, stiffness distribution and other factors of the additional mass have different effects on the natural frequencies, which are important for the demand for high-precision, high-stability weighing measurement. The results of this research can provide an effective scientific evaluation basis for the reliable prediction of natural frequencies.

8.
J Biophotonics ; 16(12): e202300193, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37556310

RESUMO

Colorectal cancer is a prevalent malignancy globally, often linked to chronic colitis. Terahertz technology, with its noninvasive and fingerprint spectroscopic properties, holds promise in disease diagnosis. This study aimed to explore terahertz technology's application in colitis-associated cancer using a mouse model. Mouse colorectal tissues were transformed into paraffin-embedded blocks for histopathological analysis using HE staining. Terahertz transmission spectroscopy was performed on the tissue blocks. By comparing terahertz absorption differences, specific frequency bands were identified as optimal for distinguishing cancerous and normal tissues. The study revealed that terahertz spectroscopy effectively differentiates colitis-related cancers from normal tissues. Remarkably, 1.8 THz emerged as a potential optimal frequency for diagnosing colorectal cancer in mice. This suggests the potential for rapid histopathological diagnosis of colorectal cancer using terahertz technology.


Assuntos
Neoplasias Colorretais , Espectroscopia Terahertz , Humanos , Espectroscopia Terahertz/métodos , Neoplasias Colorretais/diagnóstico
9.
Polymers (Basel) ; 15(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36850095

RESUMO

Viscoelastic fibre prestressing (VFP) is a promising technique to counterbalance the potential thermal residual stress within a polymeric composite, offering superior mechanical benefits for structural engineering applications. It has been demonstrated that the time required for a desirable creep strain can be significantly reduced by implementing higher creep stress, while its long-term stability is still unknown. Here, we developed the prestress equivalence principle and investigated the durability of viscoelastic fibre prestressing within a composite in order to further enrich the prestress mechanisms. The effectiveness of the prestress equivalence principle was refined through Charpy impact testing of prestressed samples with various pre-strain levels. The durability was investigated by subjecting samples to both natural aging (up to 0.5 years) and accelerated aging (by using the time-temperature superposition principle). It is found that the prestress equivalence principle offers flexibility for viscoelastically prestressed polymeric matrix composite (VPPMC) technology; the impact benefits offered by VFP are still active after being accelerated aged to an equivalent of 20,000 years at 20 °C, inferring long-term reliability of VFP-generated fibre recovery within a polymeric composite. These findings demonstrated that both materials and energy consumption could be conserved for advanced composites. Therefore, they promote further steps of VPPMC technology toward potential industrial applications, especially for impact protection.

10.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679310

RESUMO

The elastic fibre prestressing (EFP) technique has been developed to balance the thermal residual stress generated during curing of a polymeric composite. The continuous fibre reinforcements are prestressed and then impregnated into a polymeric matrix, where the prestress load is only removed after the resin is fully cured in order to produce an elastically prestressed polymeric matrix composite (EPPMC). Although the EFP is active in improving the static mechanical performance of a composite, its mechanics on dynamic mechanical performance and viscoelasticity of a composite is still limited. Here, we established a theoretical model in order to decouple the EFP principle, aiming to better analyse the underlying mechanics. A bespoke fibre prestressing rig was then developed to apply tension on a unidirectional carbon-fibre-reinforced epoxy prepreg to produce EPPMC samples with various EFP levels. The effects of EFP were then investigated by carrying out both static and dynamic mechanical testing, as well as the viscoelastic creep performance. It was found that there is an optimal level of EFP in order to maximise the prestress benefits, whilst the EFP is detrimental to the fibre/matrix interface. The EFP mechanisms are then proposed based on these observations to reveal the in-plane stress evolutions within a polymeric composite.

11.
Polymers (Basel) ; 15(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38231948

RESUMO

The transition of large-scale cryogenic propellant tanks from metal to composite materials is the main trend in the global aerospace industry. Aiming to address the challenges of achieving the manufacturing of integrated and cost-effective manufacturing of aerospace cryogenic composite tanks that cannot be realized through the conventional autoclave process, and those of existing out-of-autoclave processes that are unable to effectively suppress defects under low-pressure conditions, a vibration pretreatment was innovatively introduced into the microwave curing process of composite materials in this study. Based on a systematic analysis of the inhibitory mechanisms of vibration pretreatment on void formation and the uniform heating mechanisms of microwaves in composite materials, the experimental results showed that the compound curing process enabled the production of components with complex structural features under low-pressure conditions while achieving equivalent surface precision and comprehensive properties, including porosity, interlaminar shear strength, and cryogenic permeation resistance, as those obtained through the standard 0.6 MPa autoclave process. This holds great promise for the application of out-of-autoclave processes in the manufacturing of large-scale aerospace cryogenic composite tanks.

12.
Quant Imaging Med Surg ; 12(6): 3193-3203, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35655833

RESUMO

Background: The differential diagnosis of acute and chronic colitis remains a common clinical problem. Optical coherence tomography (OCT) is a non-invasive, high-resolution imaging technique that can be used to measure morphological changes in the intestinal wall and estimate intestinal inflammation. We aimed to conduct an ex vivo experiment on a mouse model investigate the value of OCT as a tool for the differential diagnosis of acute and chronic colitis. Methods: Mice were administered dextran sulfate sodium salt (DSS) to construct acute and chronic colitis models. Acutely- and chronically-affected intestinal walls were scanned by OCT, and then the scanned colonic tissue samples were stained with hematoxylin and eosin (HE). Structural and morphological changes indicating inflammation in the intestinal wall were evaluated in the HE sections and OCT images using different parameters. The parameters were used in one-way analysis of variance (ANOVA) to screen for a differential diagnosis of acute or chronic colitis. Results: For the HE sections, the angle of the mucosal folds, length of the basilar part, and submucosal height and area were statistically significant parameters in the comparisons between the mice with acute colitis and the control-group mice (P<0.05). In the comparisons between chronic colitis mice and control-group mice, the angle of the mucosal folds, length of the basilar part, submucosal height and area, muscularis thickness, submucosal height + muscularis thickness, and mucosal thickness were statistically significant parameters (P<0.05). Finally, in the comparisons between acute colitis mice and those with chronic colitis, the angle of the mucosal folds, submucosal height and area, muscularis thickness, submucosal height + muscularis thickness, and mucosal thickness were statistically significant parameters (P<0.05). For the OCT images, only the length of the basilar part and submucosal height + muscularis thickness were statistically significant parameters between the acute colitis mice and control-group mice (P<0.05). The length of the basilar part and submucosal height + muscularis thickness were statistically significant between chronic colitis mice and control-group mice (P<0.05). In the comparisons between acute colitis mice and those with chronic colitis, only submucosal height + muscularis thickness was a statistically significant parameter (P<0.05). Conclusions: Certain intestinal wall parameters in OCT can be used to make a differential diagnosis between acute and chronic colitis possible. This study contributes to constructing a potential diagnostic system for evaluating colorectal inflammation using OCT.

13.
Micromachines (Basel) ; 12(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34577736

RESUMO

The reverse design method (RDM) is a frontier direction in the optical research field. In this work, RDM is applied to the design of terahertz demultiplexers, including two-port and three-port terahertz demultiplexers, with areas of 3 mm × 3 mm and 5 mm × 5 mm, respectively. The Finite-Difference Time-Domain (FDTD) simulation results show that the terahertz waves at frequencies of 0.5 THz and 0.417 THz can be well separated by the two-port demultiplexer, and the transmittances of the two outputs reach as high as 0.75 after bandwidth optimization. Meanwhile, the three-port terahertz demultiplexer can have terahertz waves separated from three Ports, and the crosstalk between adjacent channels is less than -18 dB.

14.
Angew Chem Int Ed Engl ; 60(29): 16009-16018, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33908140

RESUMO

Single-atom metal-insulator-semiconductor (SMIS) heterojunctions based on Sn-doped Fe2 O3 nanorods (SF NRs) were designed by combining atomic deposition of an Al2 O3 overlayer with chemical grafting of a RuOx hole-collector for efficient CO2 -to-syngas conversion. The RuOx -Al2 O3 -SF photoanode with a 3.0 nm thick Al2 O3 overlayer gave a >5-fold-enhanced IPCE value of 52.0 % under 370 nm light irradiation at 1.2 V vs. Ag/AgCl, compared to the bare SF NRs. The dielectric field mediated the charge dynamics at the Al2 O3 /SF NRs interface. Accumulation of long-lived holes on the surface of the SF NRs photoabsorber aids fast tunneling transfer of hot holes to single-atom RuOx species, accelerating the O2 -evolving reaction kinetics. The maximal CO-evolution rate of 265.3 mmol g-1 h-1 was achieved by integration of double SIMS-3 photoanodes with a single-atom Ni-doped graphene CO2 -reduction-catalyst cathode; an overall quantum efficiency of 5.7 % was recorded under 450 nm light irradiation.

15.
Quant Imaging Med Surg ; 11(1): 371-379, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33392036

RESUMO

BACKGROUND: There is an urgent need to develop a non-invasive imaging technique for detecting colorectal dysplasia and cancer. Technology for early and real-time microscopic assessments to select the most representative biopsy sites would also be of clinical value. In this study, we explored the sensitivity of optical coherence tomography (OCT) in detecting local lesions to demonstrate its potential for the early detection of colorectal dysplasia and cancer. METHODS: An azoxymethane/dextran sodium sulfate mouse model of colorectal carcinogenesis was utilized. Mice were imaged by OCT, and colorectal tissue sections were observed with hematoxylin and eosin staining. The results of the parallel analyses were compared to evaluate the performance of OCT in imaging and early screening of colorectal lesions. RESULTS: Dysplasia and cancer could be distinguished from normal colon tissues based on the OCT images. However, simple morphological changes observed in the OCT images were not sufficient to distinguish different degrees of dysplasia or distinguish dysplasia from cancerous tissues. The Youden index and diagnostic efficiency of OCT for colorectal dysplasia and cancer were 62.50% and 82.14%, respectively, while the sensitivity and specificity were 87.50% and 75.00%, respectively. Further, the positive and negative predictive values were 82.35% and 81.82%, respectively. CONCLUSIONS: Based on our findings, we predict that OCT is a promising non-invasive imaging technique that can offer excellent positive detection rates and diagnostic accuracy for early colorectal dysplasia and cancer. This technique is expected to be valuable in realizing real-time qualitative analysis and guided targeted biopsy.

16.
Quant Imaging Med Surg ; 10(5): 945-957, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489919

RESUMO

BACKGROUND: There is an urgent need to develop a noninvasive imaging technique for the diagnosis of early inflammatory lesions or early and real-time microscopic assessment before selecting the most representative biopsy sites. METHODS: In this study, a dextran sulfate sodium colitis model was developed, and intestinal histological damage scores measured the degree of inflammation in colitis. According to these scores, 6 parameters were designed for hematoxylin and eosin (HE) sections based on morphological changes, and 2 parameters were designed for optical coherence tomography (OCT) images to measure submucosal edema by morphological changes to evaluate inflammation degrees in the colon. Spearman's rank correlation method was used to compare the correlation between the submucosal morphological changes and the different degrees of inflammation. One-way analysis of variance (ANOVA) was used for comparisons among groups, while receiver operating characteristic (ROC) curves of the indicators in HE sections and OCT images were plotted. RESULTS: In HE sections, angle of mucosal folds (r=0.853, P<0.01), length of basilar parts (r=0.915, P<0.01), submucosal area (r=0.819, P<0.01), and height between submucosal and muscular layers (r=0.451, P=0.001) were correlated with the degree of inflammation in colitis. In OCT images, length of basilar parts (r=0.800, P<0.01) and height of submucosa + thickness of muscularis (r=0.648, P=0.001) were correlated with the degree of inflammation and aided the measurement of inflammation in the colon. CONCLUSIONS: Parameters based on morphological changes in OCT images and HE sections were significant indexes for evaluating the degree of inflammation in colitis. OCT images have advantages for future clinical applications in situ, including noninvasiveness and real-time imaging.

17.
Appl Opt ; 59(13): 4097-4104, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400686

RESUMO

Terahertz time-domain spectroscopy is a contactless and nondestructive testing technique that is often used to measure the thickness of layered materials. However, the technique presents limited thickness detection resolution, especially in the thin thermally grown oxide (TGO) of thermal barrier coatings whose thickness is below 30 µm. In this study, an SWT-BP algorithm combining a stationary wavelet transform (SWT) and a backpropagation (BP) neural network was proposed, and the regression coefficient of SWT-detailed results was 0.92. The prediction results were in good agreement with the real-time results; it demonstrated that the proposed algorithm was able to achieve a thickness prediction of up to 1-29 µm of the TGO. The proposed algorithm is suitable for thin thickness detection of the TGO.

18.
ChemSusChem ; 13(4): 672-676, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31883308

RESUMO

The diverse nature of organic precursors offers a versatile platform for precisely tailoring the electronic properties of semiconducting polymers. In this study, three fully conjugated sp2 carbon-linked polymers have been designed and synthesized for photocatalytic hydrogen evolution under visible-light illumination, by copolymerizing different C3 -symmetric aromatic aldehydes as knots with the 1,4-phenylene diacetonitrile (PDAN) linker through a C=C condensation reaction. The hydrogen evolution (HER) is achieved at a maximum rate of 30.2 mmol g-1 h-1 over a polymer based on 2,4,6-triphenyl-1,3,5-triazine units linked by cyano-substituted phenylene, with an apparent quantum yield (AQY) of 7.20 % at 420 nm. Increasing the degree of conjugation and planarity not only extends visible-light absorption, but also stabilizes the fully conjugated sp2 -carbon-linked donor-acceptor (D-A) polymer. Incorporating additional electron-withdrawing triazine units into the D-A polymer to form multiple electron donors and acceptors can greatly promote exciton separation and charge transfer, thus significantly enhancing the photocatalytic activity.

19.
Opt Express ; 27(23): 34067-34078, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878463

RESUMO

We report a high-resistivity silicon (HR-Si) prism coupled terahertz (THz) spoof surface plasmon polaritons (SSPPs) on flat subwavelength metasurface. Using a high refractive index prism as an external coupler, a more tightly confined SSPPs mode can be excited in a smaller resonant cavity, leading to strong light-matter interaction. Besides, theoretical analysis and experimental results have both indicated that the SSPPs resonance response to the filling patterns of analyte in the resonant cavity are quite different. In particular, we have found that the interaction between analyte and SSPPs wave can be maximized when the analyte filled with the whole resonant cavity and a higher sensitivity for THz sensing can be obtained. A high sensitivity varied from 0.31 THz/RIU to 0.85 THz/RIU is predicted. Furthermore, these SSPPs modes exhibit high Q-factor, and characteristic spectra of water caused by surface plasmon resonance (SPR) are observed, which is significant in promoting the THz-SPR sensing of polar liquids or aqueous analytes with THz metasurfaces.

20.
Opt Express ; 27(18): 25647-25655, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510433

RESUMO

We experimentally demonstrated a corrugated metallic metasurface based tunable perfect absorber for terahertz (THz) frequencies in a total internal reflection geometry. The absorbance is strongly depend on the central layer of this three-layer absorber, which provides a feasible approach to tune the absorption. In particular, there exist an optimal gap that enables a perfect absorption at specific frequency. Due to the simple 1D geometric structure of metasurface, its absorption frequency can be easily tailored over a wide frequency range (0.625-1.499 THz). More importantly, the modulation of the effective refractive index and loss of medium environment can be accepted as an alternative approach for the absorption properties modulation. This prism coupling absorber provides a new route for modulation of the absorption characteristics with potential applications in biological sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...