Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
Acta Pharmacol Sin ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914676

RESUMO

Methamphetamine (METH), an abused psychostimulant, impairs cognition through prolonged or even single-dose exposure, but animal experiments have shown contradictory effects on memory deficits. In this study we investigated the effects and underlying mechanisms of single-dose METH administration on the retrieval of object recognition memory (ORM) in mice. We showed that single-dose METH administration (2 mg/kg, i.p.) significantly impaired ORM retrieval in mice. Fiber photometry recording in METH-treated mice revealed that the activity of prelimbic cortex glutamatergic neurons (PrLGlu) was significantly reduced during ORM retrieval. Chemogenetic activation of PrLGlu or glutamatergic projections from ventral CA1 to PrL (vCA1Glu-PrL) rescued ORM retrieval impairment. Fiber photometry recording revealed that dopamine (DA) levels in PrL of METH-treated mice were significantly increased, and micro-infusion of the D2 receptor (D2R) antagonist sulpiride (0.25 µg/side) into PrL rescued ORM retrieval impairment. Whole-cell recordings in brain slices containing the PrL revealed that PrLGlu intrinsic excitability and basal glutamatergic synaptic transmission were significantly reduced in METH-treated mice, and the decrease in intrinsic excitability was reversed by micro-infusion of Sulpiride into PrL in METH-treated mice. Thus, the impaired ORM retrieval caused by single-dose METH administration may be attributed to reduced PrLGlu activity, possibly due to excessive DA activity on D2R. Selective activation of PrLGlu or vCA1Glu-PrL may serve as a potential therapeutic strategy for METH-induced cognitive dysfunction.

2.
Ann Surg Oncol ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824192

RESUMO

BACKGROUND: This study was designed to develop an innovative classification and guidance system for renal hilar tumors and to assess the safety and effectiveness of robot-assisted partial nephrectomy (RAPN) for managing such tumors. METHODS: A total of 179 patients undergoing RAPN for renal hilar tumors were retrospectively reviewed. A novel classification system with surgical techniques was introduced and the perioperative features, tumor characteristics, and the efficacy and safety of RAPN were compared within subgroups. RESULTS: We classified the tumors according to our novel system as follows: 131 Type I, 35 Type II, and 13 Type III. However, Type III had higher median R.E.N.A.L., PADUA, and ROADS scores compared with the others (all p < 0.001), indicating increased operative complexity and higher estimated blood loss [180.00 (115.00-215.00) ml]. Operative outcomes revealed significant disparities between Type III and the others, with longer operative times [165.00 (145.00-200.50) min], warm ischemia times [24.00 (21.50-30.50) min], tumor resection times [13.00 (12.00-15.50) min], and incision closure times [22.00 (20.00-23.50) min] (all p < 0.005). Postoperative outcomes also showed significant differences, with longer durations of drain removal (77.08 ± 18.16 h) and hospitalization for Type III [5.00 (5.00-6.00) d] (all p < 0.05). Additionally, Type I had a larger tumor diameter than the others (p = 0.009) and pT stage differed significantly between the subtypes (p = 0.020). CONCLUSIONS: The novel renal hilar tumor classification system is capable of differentiating the surgical difficulty of RAPN and further offers personalized surgical steps tailored to each specific classification. It provides a meaningful tool for clinical practice.

3.
J Agric Food Chem ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875493

RESUMO

In the context of global population growth expected in the future, enhancing the agri-food yield is crucial. Plant diseases significantly impact crop production and food security. Modern microfluidics offers a compact and convenient approach for detecting these defects. Although this field is still in its infancy and few comprehensive reviews have explored this topic, practical research has great potential. This paper reviews the principles, materials, and applications of microfluidic technology for detecting plant diseases caused by various pathogens. Its performance in realizing the separation, enrichment, and detection of different pathogens is discussed in depth to shed light on its prospects. With its versatile design, microfluidics has been developed for rapid, sensitive, and low-cost monitoring of plant diseases. Incorporating modules for separation, preconcentration, amplification, and detection enables the early detection of trace amounts of pathogens, enhancing crop security. Coupling with imaging systems, smart and digital devices are increasingly being reported as advanced solutions.

4.
Org Lett ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912656

RESUMO

One rare stephacidin-asperochratide hybrid, stephaochratidin A (1), was isolated from the deep-sea-derived Aspergillus ochraceus MCCC 3A00521. The relative structure of 1 was determined by comprehensive analyses of its 1D and 2D NMR data as well as HRESIMS data. And the absolute configuration was unambiguously assigned by ECD calculations and the X-ray single-crystal diffraction analysis. Plausible biosynthetic pathway of 1 was proposed. Stephaochratidin A (1) exhibited significant ferroptosis inhibitory activity with the EC50 value of 15.4 µM by downregulating HMOX-1 expression and lipid peroxidation.

5.
J Hazard Mater ; 475: 134849, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885584

RESUMO

Food adulteration presents a significant challenge due to the evasion of legal oversight and the difficulty of identification. Addressing this issue, there is an urgent need for on-site, rapid, visually based small-scale equipment, along with large-scale screening technology, to enable prompt results without providing opportunities for dishonest traders to react. Colorimetric reactions offer advantages in terms of speed, visualization, and miniaturization. However, there is a scarcity of suitable colorimetric reactions for food adulteration detection, and interference from colored food impurities and easily comparable color results affects accuracy. To overcome limitations, this study introduces a novel approach utilizing polydopamine magnetic nanoparticles to enrich DNA in food samples, effectively eliminating interfering components. By employing gold nanoparticles to generate magnetic-gold nanoparticles, a single magnetic bead achieves simultaneous enrichment, impurity removal, and detection. The use of paper-based biosensors and visualization equipment allows for the visualization and digital analysis of results, achieving a low detection limit of 4.59 nmol mL-1. The method also exhibits high accuracy and repeatability, with a RSD ranging from 1.6 % to 4.0 %. This innovative colorimetric method addresses the need for rapid, miniaturized, and large-scale detection, thus providing a solution for food adulteration challenges.


Assuntos
Técnicas Biossensoriais , Colorimetria , Contaminação de Alimentos , Ouro , Nanopartículas Metálicas , Papel , Colorimetria/métodos , Ouro/química , Contaminação de Alimentos/análise , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Indóis/química , Indóis/análise , Limite de Detecção , Polímeros/química , DNA/análise , DNA/química , Nanopartículas de Magnetita/química
6.
Arch Virol ; 169(7): 141, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850364

RESUMO

The brown planthopper (BPH), Nilaparvata lugens, is a significant agricultural pest capable of long-distance migration and transmission of viruses that cause severe disease in rice. In this study, we identified a novel segmented RNA virus in a BPH, and this virus exhibited a close relationship to members of a recently discovered virus lineage known as "quenyaviruses" within the viral kingdom Orthornavirae. This newly identified virus was named "Nilaparvata lugens quenyavirus 1" (NLQV1). NLQV1 consists of five positive-sense, single-stranded RNAs, with each segment containing a single open reading frame (ORF). The genomic characteristics and phylogenetic analysis support the classification of NLQV1 as a novel quenyavirus. Notably, all of the genome segments of NLRV contained the 5'-terminal sequence AUCUG. The characteristic virus-derived small interfering RNA (vsiRNA) profile of NLQV1 suggests that the antiviral RNAi pathway of the host BPH was activated in response to virus infection. These findings represent the first documented report of quenyaviruses in planthoppers, contributing to our understanding of quenyaviruses and expanding our knowledge of insect-specific viruses in planthoppers.


Assuntos
Genoma Viral , Hemípteros , Fases de Leitura Aberta , Filogenia , Vírus de RNA , RNA Viral , Animais , Hemípteros/virologia , Genoma Viral/genética , RNA Viral/genética , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Doenças das Plantas/virologia , Oryza/virologia , Sequenciamento Completo do Genoma , RNA Interferente Pequeno/genética
8.
Int J Biol Macromol ; 269(Pt 2): 132271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734330

RESUMO

As an anti-infection antibiotic delivery route, a drug-controlled release system based on a specific condition stimulus response can enhance drug stability and bioavailability, reduce antibiotic resistance, achieve on-demand release and improve targeting and utilization efficiency. In this study, chitosan-coated liposomes containing levofloxacin (Lef@Lip@CS) were prepared with lysozyme in body fluids serving as an intelligent "switch" to enable accurate delivery of antibiotics through the catalytic degradation ability of chitosan. Good liposome encapsulation efficacy (64.89 ± 1.86 %) and loading capacity (5.28 ± 0.18 %) were achieved. The controlled-release behavior and morphological characterization before and after enzymatic hydrolysis confirmed that the levofloxacin release rate depended on the lysozyme concentration and the degrees of deacetylation of chitosan. In vitro bacteriostatic experiments showed significant differences in the effects of Lef@Lip@CS before and after enzyme addition, with 6-h inhibition rate of 72.46 % and 100 %, and biofilm removal rates of 51 % and 71 %, respectively. These findings show that chitosan-coated liposomes are a feasible drug delivery system responsive to lysozyme stimulation.


Assuntos
Quitosana , Liberação Controlada de Fármacos , Levofloxacino , Lipossomos , Muramidase , Muramidase/química , Quitosana/química , Levofloxacino/farmacologia , Levofloxacino/administração & dosagem , Levofloxacino/química , Lipossomos/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Preparações de Ação Retardada , Testes de Sensibilidade Microbiana
9.
Proc Natl Acad Sci U S A ; 121(16): e2318783121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588412

RESUMO

Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.


Assuntos
Hemípteros , MicroRNAs , Oryza , Animais , Interferência de RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Saliva , Hemípteros/fisiologia , Imunidade Vegetal/genética , Oryza/genética
10.
Plant Foods Hum Nutr ; 79(2): 451-459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38446284

RESUMO

Synsepalum dulcificum (Miracle fruit) is a tropical plant in West and Central Africa, which has been historically used for treating diarrhea in humans and animals. Pharmacological research has shown that the leaves of the plant possess anti-hyperlipidemia activity. However, its anti-hyperlipidemic components have not been reported. In this study, the leaves of S. dulcificum were extracted using 95% ethanol and the extract was fractionated using different polar solvents. The anti-hyperlipidemia activity of the extract and fractions were evaluated using the zebrafish model. The results showed that the ethyl acetate (EA) fraction displayed the best anti-hyperlipidemic effect. A comparison of the high-performance liquid chromatography equipped with diode array detector (HPLC-DAD) profiles of the ethanol extract and different fractions at 350 nm indicated that a peak at 37.4 min has the highest intensity in the EA part, relatively. Then the chemical constituents of the extract and the active fraction were extensively identified using UPLC-Q-Exactive-Orbitrap-MS/MS, showing the main peak was quercitrin and other components in the EA part mainly included quercitrin analogs. Furthermore, the quercitrin was isolated from the plant and its contents in the extract and fractions were determined using high-performance liquid chromatography with ultraviolet detector (HPLC-UV) method. The quantitative results showed that the content of quercitrin in the EA fraction was 10.04% (w/w). Further pharmacological study indicated that quercitrin also possessed potent anti-hyperlipidemia activity (improvement rates of liver fat and total cholesterol were 75.6% and 92.5% at 40 µg/mL, respectively). Besides, quercitrin showed little toxicity to zebrafish embryos.


Assuntos
Hiperlipidemias , Hipolipemiantes , Extratos Vegetais , Folhas de Planta , Quercetina , Peixe-Zebra , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Hipolipemiantes/farmacologia , Hipolipemiantes/análise , Cromatografia Líquida de Alta Pressão , Quercetina/análogos & derivados , Quercetina/análise , Quercetina/farmacologia , Hiperlipidemias/tratamento farmacológico , Frutas/química , Espectrometria de Massas em Tandem
11.
Biomed Pharmacother ; 172: 116241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330711

RESUMO

OBJECTIVE: Pathologic cardiac hypertrophy (PCH) is a precursor to heart failure. Amydrium sinense (Engl.) H. Li (AS), a traditional Chinese medicinal plant, has been extensively utilized to treat chronic inflammatory diseases. However, the therapeutic effect of ASWE on PCH and its underlying mechanisms are still not fully understood. METHODS: A cardiac hypertrophy model was established by treating C57BL/6 J mice and neonatal rat cardiomyocytes (NRCMs) in vitro with isoprenaline (ISO) in this study. The antihypertrophic effects of AS water extract (ASWE) on cardiac function, histopathologic manifestations, cell surface area and expression levels of hypertrophic biomarkers were examined. Subsequently, the impact of ASWE on inflammatory factors, p65 nuclear translocation and NF-κB activation was investigated to elucidate the underlying mechanisms. RESULTS: In the present study, we observed that oral administration of ASWE effectively improved ISO-induced cardiac hypertrophy in mice, as evidenced by histopathological manifestations and the expression levels of hypertrophic markers. Furthermore, the in vitro experiments demonstrated that ASWE treatment inhibited cardiac hypertrophy and suppressed inflammation response in ISO-treated NRCMs. Mechanically, our findings provided evidence that ASWE suppressed inflammation response by repressing p65 nuclear translocation and NF-κB activation. ASWE was found to possess the capability of inhibiting inflammation response and cardiac hypertrophy induced by ISO. CONCLUSION: To sum up, ASWE treatment was shown to attenuate ISO-induced cardiac hypertrophy by inhibiting cardiac inflammation via preventing the activation of the NF-kB signaling pathway. These findings provided scientific evidence for the development of ASWE as a novel therapeutic drug for PCH treatment.


Assuntos
Araceae , NF-kappa B , Animais , Camundongos , Ratos , Camundongos Endogâmicos C57BL , Isoproterenol/toxicidade , Transdução de Sinais , Íons , Lítio , Artesunato , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
12.
Int J Biol Macromol ; 263(Pt 1): 130207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365156

RESUMO

Polysaccharides have been widely used in the development of natural drugs and health food. However, polysaccharide characterization lags due to inherently complicated features and the limitations of existing detection approaches. We aimed to provide new insight into the fine structure and conformational visualization of polysaccharides from Gastrodia elata Blume, a medicinal and edible plant. A water-soluble polysaccharide (GEP2-6) with the high molecular weight of 2.7 × 106 Da was first obtained, and its purity reached 99.2 %. Chemical and spectroscopic analyses jointly revealed that GEP2-6 was a glucan linked by α-(1 â†’ 4) and α-(1 â†’ 6) glycosidic bonds. After enzymolysis, the local structure of GEP2-6 included α-1,4-Glcp, α-1,6-Glcp, α-1,4,6-Glcp, and α-1-Glcp at a molar ratio of 31.27∶1.32∶1.08∶0.93. The glycosidic linkage pattern of repeating units was further simulated by a glycan database and spatial examination software. The good dissolution performance was interpreted by dynamics simulation and practical molecular characteristics. Spherical flexible chains and the porous stable conformation were corroborated using atomic force microscopy. In addition, GEP2-6 could effectively scavenge DPPH and hydroxyl radicals as a promising natural antioxidant. These efforts will contribute to the expansion of clinical applications of this G. elata polysaccharide and the structural elucidation for macromolecular polysaccharides combined with traditional and modern analysis techniques.


Assuntos
Gastrodia , Extratos Vegetais , Extratos Vegetais/química , Glucanos , Gastrodia/química , Simulação de Dinâmica Molecular , Peso Molecular , Água , Polissacarídeos/química
13.
Plant Pathol J ; 40(1): 73-82, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326960

RESUMO

Gardenia (Gardenia jasminoides) is a popular and economically vital plant known for its ornamental and medicinal properties. Despite its widespread cultivation, there has been no documentation of plant viruses on gardenia yet. In the present study, gardenia leaves exhibiting symptoms of plant viral diseases were sampled and sequenced by both metatranscriptome and small RNA sequencing. As a consequence, bean common mosaic virus (BCMV) was identified in gardenia for the first time and named BCMV-gardenia. The full genome sequence of BCMV-gardenia is 10,054 nucleotides (nt) in length (excluding the poly (A) at the 3' termini), encoding a large polyprotein of 3,222 amino acids. Sequence analysis showed that the N-termini of the polyprotein encoded by BCMV-gardenia is less conserved when compared to other BCMV isolates, whereas the C-termini is the most conserved. Maximum likelihood phylogenetic analysis showed that BCMV-gardenia was clustered closely with other BCMV isolates identified outside the leguminous plants. Our results indicated that the majority of BCMV-gardenia virus-derived small interfering RNAs (vsiRNAs) were 21 nt and 22 nt, with 21 nt being more abundant. The first nucleotide at the 5' termini of vsiRNAs derived from BCMV-gardenia preferred U and A. The ratio of vsiRNAs derived from sense (51.1%) and antisense (48.9%) strands is approaching, and the distribution of vsiRNAs along the viral genome is generally even, with some hot spots forming in local regions. Our findings could provide new insights into the diversity, evolution, and host expansion of BCMV and contribute to the prevention and treatment of this virus.

14.
Oncogene ; 43(10): 703-713, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218898

RESUMO

Aberrant activation of the epithelial-mesenchymal transition (EMT) pathway drives the development of solid tumors, which is precisely regulated by core EMT-related transcription factors, including Twist1. However, the expression pattern and regulatory mechanism of Twist1 in the progression of bladder cancer is still unclear. In this study, we explore the role of Twist1 in the progression of bladder cancer. We discovered that the EMT regulon Twist1 protein, but not Twist1 mRNA, is overexpressed in bladder cancer samples using RT-qPCR, western blot and immunohistochemistry (IHC). Mechanistically, co-immunoprecipitation (Co-IP) coupled with liquid chromatography and tandem mass spectrometry identified USP5 as a binding partner of Twist1, and the binding of Twist1 to ubiquitin-specific protease 5 (USP5) stabilizes Twist through its deubiquitinase activity to activate the EMT. Further studies found that USP5 depletion reduces cell proliferation, invasion and the EMT in bladder cancer cells, and ectopic expression of Twist1 rescues the adverse effects of USP5 loss on cell invasion and the EMT. A xenograft tumor model was used to reconfirmed the inhibitor effect of silencing USP5 expression on tumorigenesis in vivo. In addition, USP5 protein levels are significantly elevated and positively associated with Twist1 levels in clinical bladder cancer samples. Collectively, our study revealed that USP5-Twist1 axis is a novel regulatory mechanism driving bladder cancer progression and that approaches targeting USP5 may become a promising cancer treatment strategy.


Assuntos
Proteína 1 Relacionada a Twist , Neoplasias da Bexiga Urinária , Humanos , Animais , Proteína 1 Relacionada a Twist/genética , Neoplasias da Bexiga Urinária/genética , Bexiga Urinária , Transformação Celular Neoplásica , Modelos Animais de Doenças , Proteases Específicas de Ubiquitina
15.
Arch Virol ; 169(1): 19, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180588

RESUMO

The complete genomic sequence of a novel robigovirus, provisionally named "Mentha arvensis robigovirus 1" (MARV1), was determined by combining next-generation sequencing (NGS), reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE) PCR. The complete genomic sequence of this new virus is 7617 nucleotides in length, excluding the 3' poly(A) tail. The MARV1 genome encodes a putative replicase, "triple gene block" proteins, and a coat protein. Phylogenetic analysis demonstrated that MARV1 is a member of the genus Robigovirus, with closest relationships to African oil palm ringspot virus (AOPRV). Furthermore, MARV1-derived small interfering RNAs (siRNAs) showed typical patterns of plant-virus-derived siRNAs produced by the host antiviral RNA interference pathway. This is the first report of a plant virus of the genus Robigovirus in M. arvensis.


Assuntos
Flexiviridae , Mentha , Filogenia , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro , RNA Interferente Pequeno/genética
16.
Insect Sci ; 31(1): 91-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37334667

RESUMO

Apolipoprotein D (ApoD), a member of the lipocalin superfamily of proteins, is involved in lipid transport and stress resistance. Whereas only a single copy of the ApoD gene is found in humans and some other vertebrates, there are typically several ApoD-like genes in insects. To date, there have been relatively few studies that have examined the evolution and functional differentiation of ApoD-like genes in insects, particularly hemi-metabolous insects. In this study, we identified 10 ApoD-like genes (NlApoD1-10) with distinct spatiotemporal expression patterns in Nilaparvata lugens (BPH), which is an important pest of rice. NlApoD1-10 were found to be distributed on 3 chromosomes in a tandem array of NlApoD1/2, NlApoD3-5, and NlApoD7/8, and show sequence and gene structural divergence in the coding regions, indicating that multiple gene duplication events occurred during evolution. Phylogenetic analysis revealed that NlApoD1-10 can be clustered into 5 clades, with NlApoD3-5 and NlApoD7/8 potentially evolving exclusively in the Delphacidae family. Functional screening using an RNA interference approach revealed that only NlApoD2 was essential for BPH development and survival, whereas NlApoD4/5 are highly expressed in testes, and might play roles in reproduction. Moreover, stress response analysis revealed that NlApoD3-5/9, NlApoD3-5, and NlApoD9 were up-regulated after treatment with lipopolysaccharide, H2 O2 , and ultraviolet-C, respectively, indicating their potential roles in stress resistance.


Assuntos
Hemípteros , Animais , Apolipoproteínas D/genética , Apolipoproteínas D/metabolismo , Hemípteros/fisiologia , Filogenia , Interferência de RNA
17.
Int J Biol Macromol ; 254(Pt 3): 128051, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956811

RESUMO

The adoption of environmentally friendly and efficient methods to control food spoilage and crop diseases has become a new worldwide trend. In the medical field, various enzyme-responsive controlled-release drug formulations have been developed for precision therapy. Recently, these materials and techniques have also begun to be applied in the fields of food preservation and agricultural protection. This review of contemporary research focuses on applications of enzyme-responsive controlled-release materials in the field of food preservation and crop protection. It covers a variety of composite controlled-release materials triggered by different types of enzymes and describes in detail their composition and structure, controlled-release mechanisms, and practical application effects. The enzyme-responsive materials have been employed to control foodborne pathogens, fungi, and pests. These enzyme-responsive controlled-release materials exhibit excellent capabilities for targeted drug delivery. Upon contact with microorganisms or pests, the polymer shell of the material is degraded by secreted enzymes from these organisms, thereby releasing drugs that kill or inhibit the organisms. In addition, multi-enzyme sensitive carriers have been created to improve the effectiveness and broad spectrum of the delivery system. The increasing trend towards the use of enzyme-responsive controlled-release materials has opened up countless possibilities in food and agriculture.


Assuntos
Proteção de Cultivos , Sistemas de Liberação de Medicamentos , Preparações de Ação Retardada/farmacologia , Agricultura/métodos , Conservação de Alimentos
18.
Phytochemistry ; 217: 113905, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913836

RESUMO

Three unusual oleanane-derived triterpenoids, stytontriterpenes A-C (1-3), were isolated from the resin of Styrax tonkinensis together with an oleanane-lactone (stytontriterpene D, 4). Their structures and absolute configurations were characterised using a combination of spectroscopic analysis, electronic circular dichroism, and theoretical calculations. 1 and 2 belong to nor-oleanane with rare spiro D/E rings and 3 contains one infrequent C32 scaffold. 1 considerably suppressed the number of adhered leukemic monocytes (THP-1) to human umbilical vein endothelial cells and attenuated the upregulations of mRNA and protein levels of intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 at 5 µM, suggesting that 1 might be a promising anti-vascular inflammatory chemical for atherosclerosis therapy. Plausible biosynthetic pathways for 1-4 are also proposed.


Assuntos
Aterosclerose , Triterpenos , Humanos , Styrax/química , Triterpenos/química , Resinas Vegetais/química , Células Endoteliais da Veia Umbilical Humana , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo
19.
Anal Chim Acta ; 1285: 342020, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38057058

RESUMO

BACKGROUND: As a common pollutant, the carcinogenic properties of polycyclic aromatic hydrocarbons have garnered considerable attention. Trace metabolites of polycyclic aromatic hydrocarbons can be detected in urine as a non-invasively approach to monitor the exposure level. Nonetheless, the urine samples have the disadvantages of being large in volume and containing numerous impurities. Given the growing demand to study metabolites with low abundance and potential biomarkers, there is a pressing need for a preconcentration and high-throughput technique for effectively handling complex liquid samples. RESULTS: Polystyrene-coated magnetic nanoparticles were used to establish a novel magnetic extraction method for monohydroxy polycyclic aromatic hydrocarbons in urine samples. Polystyrene magnetic nanoparticles are an ideal absorbent for solid-phase extraction. After the material was mixed with the sample and adsorbed the target analyte, the analytes on the material were eluted and quantified using high-performance liquid chromatography. Influencing factors were optimized, and the proposed method achieved desirable sensitivity in analyzing low-abundance metabolites in large volumes of complex urine samples. The recoveries of intra-day and inter-day were 78.0-118.0 % and 81.0 %-115.0 %, respectively. The intra-day and inter-day reproducibility were less than 4.5 % and 8.6 %, respectively. The limits of detection were in the range of 0.009-0.041 ng mL-1, and the limits of quantification were in the range of 0.030-0.135 ng mL-1. SIGNIFICANCE AND NOVELTY: The application of reusable polystyrene-coated magnetic solid-phase nanoparticles as adsorbents makes the extraction of monohydroxy polycyclic aromatic hydrocarbons from urine samples economical and environmentally benign. The proposed method is simple, sensitive, and efficient compared to existing techniques. The nanoparticles are easy to prepare, showing potential for rapid screening of complex bulk bio-samples in batches with high efficiency and low budget.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Cromatografia Líquida de Alta Pressão , Hidrocarbonetos Policíclicos Aromáticos/urina , Poliestirenos , Reprodutibilidade dos Testes , Extração em Fase Sólida/métodos , Fenômenos Magnéticos , Limite de Detecção
20.
Int. braz. j. urol ; 49(6): 716-731, Nov.-Dec. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550271

RESUMO

ABSTRACT Objectives: Accurate preoperative prediction of adverse pathology is crucial for treatment planning of renal cell carcinoma (RCC). Previous studies have emphasized the potential of prostate-specific membrane antigen positron emission tomography / computed tomography (PSMA PET/CT) in differentiating between benign and malignant localized renal tumors. However, there is a scarcity of case reports elucidating the identification of aggressive pathological features using PET/CT. Our study was designed to prospectively compare the diagnostic value of enhanced CT, 68Ga-PSMA-11 and 18F-fluorodeoxyglucose (18F-FDG) PET/CT in clear-cell renal cell carcinoma (ccRCC) with necrosis or sarcomatoid or rhabdoid differentiation. Materials and Methods: A prospective case series of patients with a newly diagnosed renal mass who underwent enhanced CT, 68Ga-PSMA-11 and 18F-FDG PET/CT within 30 days prior to nephrectomy was included. Complete preoperative and postoperative clinicopathological data were recorded. Patients who received neoadjuvant targeted therapy, declined enhanced CT or PET/CT scanning, refused surgical treatment or had non-ccRCC pathological indications were excluded. Radiological parameters were compared within subgroups of pathological characteristics. Bonferroni corrections were used to adjust for multiple testing and statistical significance was set at a p-value less than 0.017. Results: Seventy-two patients were available for the final analysis. Enhanced CT demonstrated poor performance in identifying necrosis, sarcomatoid or rhabdoid differentiation and adverse pathology (all P > 0.05). The maximum standardized uptake value (SUVmax) of 68Ga-PSMA-11 PET/CT was more effective than 18F-FDG PET/CT in identifying tumor necrosis and adverse pathology, with an area under the curve (AUC) of 0.85 (cutoff value=25.26, p<0.001; Delong test z=2.709, p=0.007) for tumor necrosis and AUC of 0.90 (cutoff value=25.26, p<0.001; Delong test z=3.433, p<0.001) for adverse pathology. However, no significant statistical difference was found between 68Ga-PSMA-11 and 18F-FDG PET/CT in predicting sarcomatoid or rhabdoid feature (AUC of 0.91 vs.0.75, Delong test z=1.998, p=0.046). Subgroup analyses based on age, sex, tumor location, maximal diameter, stage and WHO/ISUP grade demonstrated that 68Ga-PSMA-11 PET/CT SUVmax had a significant predictive value for adverse pathology. Enhanced CT value and SUVmax demonstrated strong reliability [intraclass correlation coefficient (ICC) > 0.80], indicating a robust correlation. Conclusions: 68Ga-PSMA-11 PET/CT demonstrates distinct advantages in identifying aggressive pathological features of primary ccRCC when compared to enhanced CT and 18F-FDG PET/CT. Further research and assessment are warranted to fully establish the clinical utility of 68Ga-PSMA-11 PET/CT in ccRCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...