Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1256574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035086

RESUMO

The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has had a significant impact on global social and economic stability. To combat this, researchers have turned to omics approaches, particularly epitranscriptomics, to limit infection and develop effective therapeutic strategies. Multi-omics can provide the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes. Epitranscriptomics focuses on the mechanisms of gene transcription in cells and tissues and the relationship between genetic material and epigenetic regulation. This review highlights the role of post-transcriptional regulation in SARS-CoV-2, which affect various processes such as virus infection, replication, immunogenicity, and pathogenicity. The review also explains the formation mechanism of post-transcriptional modifications and how they can be regulated to combat viral infection and pathogenicity.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Epigênese Genética , Pandemias , Virulência
2.
Biosens Bioelectron ; 240: 115663, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678060

RESUMO

MiRNAs played critical roles in triple negative breast cancer (TNBC) as potential biomarkers. Herein, an efficient signal "off-on" mode-biosensor based on electrochemiluminescence resonance energy transfer (ECL-RET) was successfully constructed for the miRNA-150-5p determination in TNBC. The ECL-RET regulated-sensing platform consisted of NiMn-LDHs nanoflowers, the artificially assembled phospholipid bilayers and hairpin DNA-labeled Eu-doped MoS2 QDs. Firstly, Eu-doped MoS2 QDs with high quantum efficiency were prepared as the ECL-RET donors. And NiMn-layer double hydroxides (LDHs) nanoflowers with wide UV-vis absorption spectra as the ECL-RET acceptors. Secondly, due to the hairpin DNA structure, the closed distance between ECL-RET donor-acceptor pair can quench the luminescence signal of Eu-doped MoS2 QDs. When miRNA-150-5p was captured, the hairpin DNA structure changed to a rodlike configuration and enlarged the distance between Eu-doped MoS2 QDs and NiMn-LDHs. As a result, the recovery of ECL signal can be observed as a signal "turn off-on" mode. Furthermore, the hydrophilicity of the lipid bilayer can reduce the nonspecific adsorption and improve the flexibility of the hairpin DNA efficiently. Therefore, based on the ECL-RET regulation strategy, the biosensor was employed to detect miRNA-150-5p from 10 fM to 1 nM with a detection limit of 1.5 fM. The constructed biosensor can effectively differentiate TNBC patient tumor and healthy breast fibroadenoma. The ECL-RET regulation strategy provided a new biosensing pathway for ultrasensitive detection of biomolecules and promoted the development of diagnosis and treatment of TNBC.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Molibdênio , Transferência de Energia , MicroRNAs/genética
3.
Talanta ; 265: 124875, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393716

RESUMO

In this work, a novel electrochemiluminescence (ECL) sensor has been developed to detect the miRNA-522 in the tumor tissues of triple-negative breast cancer (TNBC) patients. Au NPs/Zn MOF heterostructure was obtained by in situ growth and used as novel luminescence probe. Firstly, zinc-metal organic framework nanosheets (Zn MOF NSs) were synthesized with Zn2+ as the central metal ion and 2-aminoterephthalic acid (NH2-BDC) as the ligand. 2D MOF nanosheets with ultra-thin layered structure and relatively large specific surface areas can enhance the catalytic activity in the ECL generation. Furthermore, the electron transfer capacity and the electrochemical active surface area of MOF were greatly improved by the growth of Au NPs. Therefore, Au NPs/Zn MOF heterostructure showed the significant electrochemical activity in the sensing process. In addition, the magnetic Fe3O4@SiO2@Au microspheres were used as capture units in the magnetic separation step. The magnetic spheres with hairpin aptamer H1 can capture target gene. Then the captured miRNA-522 triggered the target catalyzed hairpin assembly (CHA) sensing process and linked Au NPs/Zn MOF heterostructure. The concentration of miRNA-522 can be quantified by the ECL signal enhancement of the Au NPs/Zn MOF heterostructure. Due to the high catalytic activity of Au NPs/Zn MOF heterostructure and their unique structural and electrochemical properties, the prepared ECL sensor achieved high-sensitive detection of miRNA-522 in the range of 1 fM to 0.1 nM with the detection limit of 0.3 fM. This strategy can provide a potential alternative for miRNA detection in medical research and clinical diagnosis of triple negative breast cancer.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Zinco/química , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Estruturas Metalorgânicas/química , Dióxido de Silício , Medições Luminescentes , Técnicas Eletroquímicas , Limite de Detecção , Nanopartículas Metálicas/química , Ouro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...