Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208408

RESUMO

With the data explosion in the intelligent era; the traditional von Neumann computing system is facing great challenges of storage and computing speed. Compared to the neural computing system, the traditional computing system has higher consumption and slower speed. However; the feature size of the chip is limited due to the end of Moore's Law. An artificial synapse based on halide perovskite CsPbI3 was fabricated to address these problems. The CsPbI3 thin film was obtained by a one-step spin-coating method, and the artificial synapse with the structure of Au/CsPbI3/ITO exhibited learning and memory behavior similar to biological neurons. In addition, the synaptic plasticity was proven, including short-term synaptic plasticity (STSP) and long-term synaptic plasticity (LTSP). We also discuss the possibility of forming long-term memory in the device through changing input signals.

2.
J Colloid Interface Sci ; 606(Pt 2): 913-919, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487938

RESUMO

With the development of mobile terminals, tunable capacitors for signal processing and memristors for calculation have received a lot of attention. Combining a tunable capacitor and a memristor can improve the performance of mobile terminals and reduce space requirements. In this article, we report on Bi2NiMnO6 (BNMO) films with high dielectric tuning and nonvolatile resistive switching (RS) effects. The BNMO films are fabricated by the sol-gel method and annealed at different temperatures. It exhibits a dielectric tunability of up to 92%. This high dielectric tunability may be attributed to the modulation of the interface dipole by the electric field. When an electric field is applied, the interface dipole of the BNMO film is far away from the interface of the BNMO, and then forms a conductive channel where anions and cations are mixed. The BNMO films are found to have a double-set type effect due to its dielectric tunability properties. This work introduces an ultra-high dielectric tuning material and a new type of RS effect on BNMO thin film, which can achieve tuning and memory behavior on a device.

3.
Nanomaterials (Basel) ; 9(12)2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31847505

RESUMO

Double perovskite Bi2NiMnO6 (BNMO) thin films grown on p-Si (100) substrates with LaNiO3 (LNO) buffer layers were fabricated using chemical solution deposition. The crystal structure, surface topography, surface chemical state, ferroelectric, and current-voltage characteristics of BNMO thin films were investigated. The results show that the nanocrystalline BNMO thin films on p-Si substrates without and with LNO buffer layer are monoclinic phase, which have antiferroelectric-like properties. The composition and chemical state of BNMO thin films were characterized by X-ray photoelectron spectroscopy. In the whole electrical property testing process, when the BNMO/p-Si heterojunction changed into a BNMO/LNO/p-Si heterojunction, the diode behavior of a single diode changing into two tail to tail diodes was observed. The conduction mechanism and temperature stability were also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...