Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(17): 6218-6228, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699274

RESUMO

The dynamic optical response properties and the distinct features of nanomaterials make photoswitchable fluorescent nanoparticles (PF NPs) attractive candidates for advanced optical applications. Over the past few decades, the design of PF NPs by coupling photochromic and fluorescent motifs at the nanoscale has been actively pursued, and substantial efforts have been made to exploit their potential applications. In this perspective, we critically summarize various design principles for fabricating these PF NPs. Then, we discuss their distinct optical properties from different aspects by highlighting the capability of NPs in fabricating new, robust photoswitch systems. Afterwards, we introduce the pivotal role of PF NPs in advanced optical applications, including sensing, anti-counterfeiting and imaging. Finally, current challenges and future development of PF NPs are briefly discussed.

2.
Chem Sci ; 14(33): 8823-8830, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37621438

RESUMO

Development of robust multi-color photoswitchable fluorescent probes is critical for many optical applications, but it remains a challenge to rationally design these probes. Here, we report a new design of Förster resonance energy transfer-based dual-color photoswitchable fluorescent nanoparticles (DPF NPs) by taking advantage of the distinct properties of ligand-protected gold nanoclusters (AuNCs). Detailed photophysical studies revealed that ultrasmall-sized AuNCs not only act as the FRET donors due to their intrinsic fluorescence properties, but also play a significant role in regulating the photochromic and aggregate properties of spiropyran through ligand-spiropyran interactions. These DPF NPs exhibit a high fluorescence on/off ratio (∼90%) for both green and red fluorescence emission, and good reversibility during cycled photo-stimulation. Cell imaging experiments showed that DPF NPs could specifically accumulate in lipid droplets, and enable photoswitchable dual-color imaging in living cells. Moreover, by labeling mitochondria with a green-emitting marker, we demonstrated that DPF NPs can distinguish different targets based on dynamic and static fluorescence signals at the sub-cellular level in two emission channels reliably. This study provides a new strategy for designing robust photoswitchable fluorescent probes by modulating the properties of photochromic dyes through ligand-protected nanoclusters, which can be generalized for the development of other photoswitch systems towards advanced optical applications.

3.
J Colloid Interface Sci ; 646: 855-862, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37235931

RESUMO

Development of new anti-counterfeiting technology to increase the difficulty of imitation and decoding is becoming increasingly important, but still remains challenging yet. In this work, we report the design of new fluorescence photoswitches based on photochromic tungsten oxide quantum dots (WO3 QDs) for dual-mode anti-counterfeiting applications. Complexing photochromic WO3 QDs with fluorescent gold nanoclusters (AuNCs) enables the construction of a photoswitchable fluorescence system (WO3-AuNCs) based on fluorescence resonance energy transfer. Detailed spectral and photophysical characterization showed that WO3 QDs well-retain the photochromic properties within the WO3-AuNCs composite. Importantly, photoresponsive and highly reversible switching of both color and fluorescence signals was successfully achieved by simply alternating the irradiation with UV and visible light. Potential utility of photoswitchable WO3-AuNCs composite as novel dual-mode anti-counterfeiting materials has been successfully demonstrated, including photoswitchable ink, rewritable paper and number encryption. Compared with other anti-counterfeiting materials, the present photochromic WO3 QDs-based fluorescent switches are easily synthesized and handled, and they can provide dual security mode (color and fluorescence). This work provides a generable WO3 QDs-assisted strategy of fabricating advanced fluorescence photoswitches for versatile optical counterfeiting applications.

4.
Anal Chem ; 95(20): 8077-8087, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37170069

RESUMO

Transition metal chalcogenide quantum dots (QDs), especially MoS2 QDs, are an emerging class of novel optical probes for versatile bioanalytical applications owing to their distinct physicochemical properties. However, the reasonable use of these QDs for biological imaging has been largely restricted due to the challenge of controllable surface functionalization. In this work, we report a new strategy to engineer the surface of MoS2 QDs by taking advantage of cyclodextrin (CD)-based host-guest chemistry. The prepared ß-CD-modified QDs (ß-CD-MoS2 QDs) exhibit enhanced fluorescence properties, excellent biocompatibility, and good stability, making them promising as novel optical probes for bioimaging. Cellular imaging experiments revealed that these ß-CD-MoS2 QDs can enter living cells through multiple internalization pathways, which differs significantly from pristine QDs. Particularly, we observed that the intracellular accumulation of MoS2 QDs in lipid droplets was enhanced owing to the specific binding of ß-CD to cholesterol, which was then harnessed for monitoring the lipid metabolism in living cells via fluorescence imaging. Furthermore, we also demonstrated the potential use of ß-CD-MoS2 QDs for targeted cell imaging and microplate-based cell recognition, which can be easily achieved via bioconjugation with functional motifs (e.g., folate acid) through host-guest chemistry. Altogether, these results illustrate the great potential of engineering the surface of MoS2 QDs and other analogous materials via CD-based host-guest chemistry for advancing their cell imaging applications.


Assuntos
Ciclodextrinas , Pontos Quânticos , Pontos Quânticos/química , Molibdênio/química , Fluorescência , Diagnóstico por Imagem
5.
ACS Appl Mater Interfaces ; 15(2): 2760-2770, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598358

RESUMO

Cell culture at liquid-liquid interfaces, for example, at the surface of oil microdroplets, is an attractive strategy to scale up adherent cell manufacturing while replacing the use of microplastics. Such a process requires the adhesion of cells at interfaces stabilized and reinforced by protein nanosheets displaying not only high elasticity but also presenting cell adhesive ligands able to bind integrin receptors. In this report, supercharged albumins are found to form strong elastic protein nanosheets when co-assembling with the co-surfactant pentafluorobenzoyl chloride (PFBC) and mediate extracellular matrix (ECM) protein adsorption and cell adhesion. The interfacial mechanical properties and elasticity of supercharged nanosheets are characterized by interfacial rheology, and behaviors are compared to those of native bovine serum albumin, human serum albumin, and α-lactalbumin. The impact of PFBC on such assembly is investigated. ECM protein adsorption to resulting supercharged nanosheets is then quantified via surface plasmon resonance and fluorescence microscopy, demonstrating that the dual role supercharged albumins are proposed to play as scaffold protein structuring liquid-liquid interfaces and substrates for the capture of ECM molecules. Finally, the adhesion and proliferation of primary human epidermal stem cells are investigated, at pinned droplets, as well as on bioemulsions stabilized by corresponding supercharged nanosheets. This study demonstrates the potential of supercharged proteins for the engineering of biointerfaces for stem cell manufacturing and draws structure-property relationships that will guide further engineering of associated systems.


Assuntos
Plásticos , Tensoativos , Humanos , Tensoativos/química , Soroalbumina Bovina/química , Proteínas da Matriz Extracelular , Proliferação de Células , Adsorção
6.
ACS Appl Mater Interfaces ; 14(39): 44147-44157, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36153958

RESUMO

Elucidating the biological behavior of engineered nanoparticles, for example, the protein corona, is important for the development of safe and efficient nanomedicine, but our current understanding is still limited due to its highly dynamic nature and lack of adequate analytical tools. In the present work, we demonstrate the establishment of a fluorescence resonance energy transfer (FRET)-based platform for monitoring the dynamic evolution behavior of the protein corona in complex biological media. With human serum albumin and lysozyme as the model serum proteins, the protein exchange process of the preformed corona on the surface of chiral quantum dots (QDs) upon feeding either individual protein or human serum was monitored in situ by FRET. Important parameters characterizing the evolution process of protein corona could be obtained upon quantitative analysis of FRET data. Further combining real-time FRET monitoring with gel electrophoresis experiments revealed that the nature of the protein initially adsorbed on the surface of QDs significantly affects the subsequent dynamic exchange behavior of the protein corona. Furthermore, our results also revealed that only a limited proportion of proteins are involved in the protein exchange, and the exchange process exhibits a significant dependence on the surface chirality of QDs. This work demonstrates the feasibility of FRET as a powerful tool to exploit the dynamic evolution process of the protein corona, which can provide theoretical guidance for further design of advanced nanomaterials for biomedical applications.


Assuntos
Coroa de Proteína , Pontos Quânticos , Proteínas Sanguíneas , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Muramidase/metabolismo , Pontos Quânticos/metabolismo , Albumina Sérica Humana
7.
Anal Chem ; 94(24): 8783-8791, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35676761

RESUMO

While an in-depth understanding of the biological behavior of engineered nanoparticles (NPs) is of great importance for their various applications, it remains challenging to quantitatively characterize NP-protein interactions in a simple and high-throughput manner. In the present work, we propose a new, colorimetric approach capable of quantitatively analyzing the adsorption of proteins onto the surface of NPs by their distinct peroxidase-mimic properties. Taking cationic AuNPs as an example, we demonstrate that this colorimetric method is capable of evaluating NP-protein interactions in a simple and high-throughput manner in multiwell plates. Important binding parameters (e.g., the binding affinity) of three different serum proteins (bovine serum albumin, transferrin, and lysozyme) as well as human serum to AuNPs with three different sizes (average diameters of 5, 10, and 15 nm) have been obtained. Based on a quantitative analysis of NP-protein interactions, we observe that the binding affinity and the inhibition efficiency of the nanozyme activity of AuNPs are strongly affected by the characteristics of proteins as well as the sizes of NPs. These results illustrate the great potential of the present colorimetric method as a simple, low-cost, and high-throughput platform for quantitatively investigating NP-protein interactions.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Adsorção , Colorimetria , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas/química , Soroalbumina Bovina/química
8.
J Colloid Interface Sci ; 610: 116-125, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922069

RESUMO

Cationic nanoparticles (NPs) have shown great potential in biological applications owing to their distinct features such as favorable cellular internalization and easy binding to biomolecules. However, our current knowledge of cationic NPs' biological behavior, i.e., NP-protein interactions, is still rather limited. Herein, we choose ultrasmall-sized fluorescent gold nanoclusters (AuNCs) coated by (11-mercaptoundecyl) - N, N, N - trimethylammonium bromide (MUTAB) as representative cationic NPs, and systematically study their interactions with different serum proteins at nano-bio interfaces. By monitoring the fluorescence intensity of MUTAB-AuNCs, all proteins are observed to bind with roughly micromolar affinities to AuNCs and quench their fluorescence. Transient fluorescence spectroscopy, X-ray photoelectron spectroscopy and isothermal titration calorimetry are also adopted to characterize the physicochemical properties of MUTAB-AuNCs after the protein adsorption. Concomitantly, circular dichroism spectroscopy reveals that cationic AuNCs can exert protein-dependent conformational changes of these serum proteins. Moreover, protein adsorption onto cationic AuNCs can significantly influence their cellular responses such as cytotoxicity and uptake efficiency. These results provide important knowledge towards understanding the biological behaviors of cationic nanoparticles, which will be helpful in further designing and utilizing them for safe and efficient biomedical applications.


Assuntos
Ouro , Nanopartículas Metálicas , Proteínas Sanguíneas , Cátions , Espectrometria de Fluorescência
9.
Chem Commun (Camb) ; 56(77): 11414-11417, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32840519

RESUMO

Herein, we reported a new strategy to simultaneously regulate both the physicochemical properties and biological behaviors of fabricated nanomaterials. Upon precisely pre-tailoring the number of charged groups of bovine serum albumin (BSA), the resultant BSA-templated gold nanoclusters (BSA-AuNCs) exhibit remarkably different fluorescence properties and strong biotemplate-dependent cellular uptake behavior.


Assuntos
Bioengenharia , Ouro/metabolismo , Nanopartículas Metálicas/química , Soroalbumina Bovina/metabolismo , Fluorescência , Ouro/química , Soroalbumina Bovina/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...