Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414323

RESUMO

Earth's rotation shapes a 24-h cycle, governing circadian rhythms in organisms. In mammals, the core clock genes, CLOCK and BMAL1, are regulated by PERIODs (PERs) and CRYPTOCHROMEs (CRYs), but their roles remain unclear in the diamondback moth, Plutella xylostella. To explore this, we studied P. xylostella, which possesses a simplified circadian system compared to mammals. In P. xylostella, we observed rhythmic expressions of the Pxper and Pxcry2 genes in their heads, with differing phases. In vitro experiments revealed that PxCRY2 repressed monarch butterfly CLK:BMAL1 transcriptional activation, while PxPER and other CRY-like proteins did not. However, PxPER showed an inhibitory effect on PxCLK/PxCYCLE. Using CRISPR/Cas9, we individually and in combination knocked out Pxper and Pxcry2, then conducted gene function studies and circadian transcriptome sequencing. Loss of either Pxper or Pxcry2 eliminated the activity peak after lights-off in light-dark cycles, and Pxcry2 loss reduced overall activity. Pxcry2 was crucial for maintaining endogenous rhythms in constant darkness. Under light-dark conditions, 1 098 genes exhibited rhythmic expression in wild-type P. xylostella heads, with 749 relying on Pxper and Pxcry2 for their rhythms. Most core clock genes lost their rhythmicity in Pxper and Pxcry2 mutants, while Pxcry2 sustained rhythmic expression, albeit with reduced amplitude and altered phase. Additionally, rhythmic genes were linked to biological processes like the spliceosome and Toll signaling pathway, with these rhythms depending on Pxper or Pxcry2 function. In summary, our study unveils differences in circadian rhythm regulation by Pxper and Pxcry2 in P. xylostella. This provides a valuable model for understanding circadian clock regulation in nocturnal animals.

2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255972

RESUMO

Congenital stationary night blindness (CSNB) is a genetically heterogeneous inherited retinal disorder, caused by over 300 mutations in 17 different genes. While there are numerous fly models available for simulating ocular diseases, most are focused on mimicking retinitis pigmentosa (RP), with animal models specifically addressing CSNB limited to mammals. Here, we present a CSNB fly model associated with the mtt gene, utilizing RNA interference (RNAi) to silence the mtt gene in fly eyes (homologous to the mammalian GRM6 gene) and construct a CSNB model. Through this approach, we observed significant defects in the eye structure and function upon reducing mtt expression in fly eyes. This manifested as disruptions in the compound eye lens structure and reduced sensitivity to light responses. These results suggest a critical role for mtt in the function of fly adult eyes. Interestingly, we found that the mtt gene is not expressed in the photoreceptor neurons of adult flies but is localized to the inner lamina neurons. In summary, these results underscore the crucial involvement of mtt in fly retinal function, providing a framework for understanding the pathogenic mechanisms of CSNB and facilitating research into potential therapeutic interventions.


Assuntos
Cristalino , Retinose Pigmentar , Animais , Drosophila/genética , Retina , Retinose Pigmentar/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...