Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 287: 154051, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37481898

RESUMO

BACKGROUND: Nitrogen nutrition is strongly associated with crop growth and development. Nitrogen application level affects leaf size as well as nitrogen content and distribution, and thus affects photosynthetic nitrogen-use efficiency (PNUE) and yield. In this study, soybean varieties "Jinyuan 55" and "Keshan 1" were treated with nitrogen as urea at: N0, 0 kg hm-2; N0.5, 60 kg hm-2; N1, 120 kg hm-2; and N1.5, 180 kg hm-2. We compared the effect of nitrogen level on plant morphology, biomass, photosynthetic physiology, nitrogen distribution, PNUE, and other soybean seedling leaf characteristics. RESULTS: Maximum carboxylation and electron transfer, net photosynthetic rates, and PNUE of both soybean varieties showed initial significant increases with increasing nitrogen application rate and subsequent stabilization. PNUE, carboxylation system components, electron transport components, and non-photosynthetic system distribution ratios in the photosynthetic system increased and subsequently decreased with increased nitrogen application rate. The nitrogen ratio between carboxylation and electron transport systems was positively correlated with PNUE in both soybean varieties. The nitrogen ratio in light-harvesting and non-photosynthetic systems showed a linear negative correlation with PNUE. CONCLUSIONS: Overall, an appropriate nitrogen level maintained a high photosynthetic nitrogen ratio, whereas low- or high-nitrogen conditions increased or decreased the nitrogen ratio in non-photosynthetic and photosynthetic systems, respectively, thus decreasing the PNUE and photosynthetic capacity. Moreover, increased nitrogen application rate led to a decreased nitrogen ratio in the light-harvesting system and an increased nitrogen ratio of electron transport and carboxylation systems. Our results provide a theoretical basis for optimizing leaf nitrogen distribution, determining optimum nitrogen levels, and promoting soybean seedling growth.


Assuntos
Nitrogênio , Plântula , Glycine max , Fotossíntese/fisiologia , Biomassa , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...