Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400450, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660929

RESUMO

For the sluggish reaction kinetics due to a four-electron transfer process, water oxidation is always a major obstacle to solar splitting of water to hydrogen. It remains a tough challenge to develop efficient nonnoble-metal photocatalysts for water oxidation. Herein, we decorate the host photocatalyst of Bi11VO19 nanotubes with the coatalyst of subnanometer MoOx clusters (denoted as Bi11VO19/MoOx hetero-nanotubes) via a one-step cation-exchange solvothermal reaction using Na2V6O16 nanowires as the hard template. It is observed that the morphology and microstructure of Bi11VO19/MoOx hetero-nanotubes vary with the dosage of Mo source and polyvinylpyrrolidone, as well as with the solvent composition. The optimized Bi11VO19/MoOx hetero-nanotubes significantly enhance the photooxidation of water to oxygen with visible light, delivering an oxygen production rate of 790 µmol g-1 h-1, which is 12 times that of bare Bi11VO19 nanotubes. In situ X-ray photoelectron spectroscopy and (photo)electrochemical characterization suggest that the enhanced photoactivity may be caused by the decorated cocatalyst of MoOx clusters, which extracts electrons from Bi11VO19 nanotubes, leaving an abundance of holes for water photooxidation. This work demonstrates a potential strategy to develop photocatalysts for energy conversion by constructing Bi11VO19-based nanostructures.

2.
Nanomicro Lett ; 16(1): 124, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372899

RESUMO

The pursuit of safer and high-performance lithium-ion batteries (LIBs) has triggered extensive research activities on solid-state batteries, while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation. Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs (ASSLBs), while it introduces new concerns about thermal stability. In this study, we propose the incorporation of a multi-functional flame-retardant triphenyl phosphate additive into poly(ethylene oxide), acting as a thin buffer layer between LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode and garnet electrolyte. Through electrochemical stability tests, cycling performance evaluations, interfacial thermal stability analysis and flammability tests, improved thermal stability (capacity retention of 98.5% after 100 cycles at 60 °C, and 89.6% after 50 cycles at 80 °C) and safety characteristics (safe and stable cycling up to 100 °C) are demonstrated. Based on various materials characterizations, the mechanism for the improved thermal stability of the interface is proposed. The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature. Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.

3.
Small ; 20(26): e2310526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221685

RESUMO

Featured with the attractive properties such as large surface area, unique atomic layer thickness, excellent electronic conductivity, and superior catalytic activity, layered metal chalcogenides (LMCs) have received considerable research attention in electrocatalytic applications. In this review, the approaches developed to synthesize LMCs-based electrocatalysts are summarized. Recent progress in LMCs-based composites for electrochemical energy conversion applications including oxygen reduction reaction, carbon dioxide reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, overall water splitting, and nitrogen reduction reaction is reviewed, and the potential opportunities and practical obstacles for the development of LMCs-based composites as high-performing active substances for electrocatalytic applications are also discussed. This review may provide an inspiring guidance for developing high-performance LMCs for electrochemical energy conversion applications.

4.
ACS Appl Mater Interfaces ; 15(51): 59370-59379, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38097508

RESUMO

Solid-state batteries (SSBs), which have high energy density and are safe, are recognized as an important field of study. However, the poor interfacial contact with high resistance, the dendrite problem, and the volume change of the metallic lithium anode prevent the use of SSBs. Li0.5La0.5TiO3 (LLTO) particles and molten lithium were used to create a high-performance LLTO-Li composite lithium with a sequential ion-conducting phase. With garnet electrolytes, this lithium has better wettability and reduced surface tension. To compensate for the lithium depletion that occurs during stripping, the Li-Ti phase with a high ionic diffusion coefficient that forms in the anode can rapidly transport lithium from the bulk to the solid-state interface, ensuring tight interface contact, preventing the formation of gaps, and homogenizing the current and Li+ flux. The LLTO-Li| LLZTO| LLTO-Li symmetric cell exhibits a good cyclic stability of 1000 h at room temperature, a low interfacial resistance of 22 Ω cm2, and a high critical current density of 1.2 mA cm-2. Furthermore, fully built cells with a LiFePO4 cathode showed outstanding cycling performance, maintaining 95% of their capacity after 900 cycles at 1 C and 92% capacity retention after 100 cycles at 2 C.

5.
Angew Chem Int Ed Engl ; 62(42): e202310970, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37644643

RESUMO

The large-scale applicability of Zn-metal anodes is severely impeded by the issues such as the dendrite growth, complicated hydrogen evolution, and uncontrollable passivation reaction. Herein, a negatively charged carboxylated double-network hydrogel electrolyte (Gelatin/Sodium alginate-acetate, denoted as Gel/SA-acetate) has been developed to stabilize the interfacial electrochemistry, which restructures a type of Zn2+ ion solvent sheath optimized via a chain-liquid synergistic effect. New hydrogen bonds are reconstructed with water molecules by the zincophilic functional groups, and directional migration of hydrated Zn2+ ions is therefore induced. Concomitantly, the robust chemical bonding of such hydrogel layers to the Zn slab exhibits a desirable anti-catalytic effect, thereby greatly diminishing the water activity and eliminating side reactions. Subsequently, a symmetric cell using the Gel/SA-acetate electrolyte demonstrates a reversible plating/stripping performance for 1580 h, and an asymmetric cell reaches a state-of-the-art runtime of 5600 h with a high average Coulombic efficiency of 99.9 %. The resultant zinc ion hybrid capacitors deliver exceptional properties including the capacity retention of 98.5 % over 15000 cycles, energy density of 236.8 Wh kg-1 , and high mechanical adaptability. This work is expected to pave a new avenue for the development of novel hydrogel electrolytes towards safe and stable Zn anodes.

6.
Small ; 19(45): e2302629, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431237

RESUMO

Tailor-made carbonaceous-based cathodes with zincophilicity and hydrophilicity are highly desirable for Zn-ion storage applications, but it remains a great challenge to achieve both advantages in the synthesis. In this work, a template electrospinning strategy is developed to synthesize nitrogen and phosphorous co-doped hollow porous carbon nanofibers (N, P-HPCNFs), which deliver a high capacity of 230.7 mAh g-1 at 0.2 A g-1 , superior rate capability of 131.0 mAh g-1 at 20 A g-1 , and a maximum energy density of 196.10 Wh kg-1 at the power density of 155.53 W kg-1 . Density functional theory calculations (DFT) reveal that the introduced P dopants regulate the distribution of local charge density of carbon materials and therefore facilitate the adsorption of Zn ions due to the increased electronegativity of pyridinic-N. Ab initio molecular dynamics (AIMD) simulations indicate that the doped P species induce a series of polar sites and create a hydrophilic microenvironment, which decreases the impedance between the electrode and the electrolyte and therefore accelerates the reaction kinetics. The marriage of ex situ/in situ experimental analyses and theoretical simulations uncovers the origin of the enhanced zincophilicity and hydrophilicity of N, P-HPCNFs for energy storage, which accounts for the faster ion migration and electrochemical processes.

7.
J Colloid Interface Sci ; 646: 129-140, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187046

RESUMO

Metal organic frameworks (MOFs) with high porosity and highly tunable physical/chemical properties can serve as heterogeneous catalysts for CO2 photoreduction, but the application is hindered by the large band gap (Eg) and insufficient ligand-to-metal charge transfer (LMCT). In this study, a simple one-pot solvothermal strategy is proposed to prepare an amino-functionalized MOF (aU(Zr/In)) featuring an amino-functionalizing ligand linker and In-doped Zr-oxo clusters, which enables efficient CO2 reduction driven with visible light. The amino functionalization leads to a significant reduction of Eg as well as a charge redistribution of the framework, allowing the absorption of visible light and the efficient separation of photogenerated carriers. Furthermore, the incorporation of In not only promotes the LMCT process by creating oxygen vacancies in Zr-oxo clusters, but also greatly lowers the energy barrier of the intermediates for CO2-to-CO conversion. With the synergistic effects of the amino groups and the In dopants, the optimized aU(Zr/In) exhibits a CO production rate of 37.58 ± 1.06 µmol g-1 h-1, outperforming the isostructural University of Oslo-66- and Material of Institute Lavoisier-125-based photocatalysts. Our work demonstrates the potential of modifying MOFs with ligands and heteroatom dopants in metal-oxo clusters for solar energy conversion.

8.
Angew Chem Int Ed Engl ; 62(10): e202218872, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36647214

RESUMO

Highly reversible plating/stripping in aqueous electrolytes is one of the critical processes determining the performance of Zn-ion batteries, but it is severely impeded by the parasitic side reaction and dendrite growth. Herein, a novel electrolyte engineering strategy is first proposed based on the usage of 100 mM xylitol additive, which inhibits hydrogen evolution reaction and accelerates cations migration by expelling active H2 O molecules and weakening electrostatic interaction through oriented reconstruction of hydrogen bonds. Concomitantly, xylitol molecules are preferentially adsorbed by Zn surface, which provides a shielding buffer layer to retard the sedimentation and suppress the planar diffusion of Zn2+ ions. Zn2+ transference number and cycling lifespan of Zn∥Zn cells have been significantly elevated, overwhelmingly larger than bare ZnSO4 . The cell coupled with a NaV3 O8 cathode still behaves much better than the additive-free device in terms of capacity retention.

9.
J Colloid Interface Sci ; 629(Pt B): 1027-1038, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36209566

RESUMO

S-scheme heterojunctions hold great potential for CO2 photoreduction into solar fuels, but their activities are severely limited by the low efficiency of interfacial charge transfer. In this work, a facile one-pot solvothermal reaction has been developed to dope Fe into flower-like In2S3/Fe3S4 hetero-microspheres (Fe-In2S3/Fe3S4 HMSs), which are demonstrated as an efficient S-scheme photocatalyst for visible-light-driven CO2 photoreduction. The doping of Fe not only reduces the bandgap of In2S3 and thus extends the optical response to the visible-light region, but also increases the densities of donors and sulfur vacancies, which leads to an elevated Fermi level (Ef). The difference of Ef between In2S3 and Fe3S4 is enlarged and their band bending at the interface is therefore enhanced, which results in promoted carriers transfer in the S-scheme pathway due to the reinforced interfacial electric field. Moreover, Fe-doped In2S3 reduces the formation energy of the *CO intermediate, which thermodynamically favors the CO evolution at the surface. As a result, the Fe-In2S3/Fe3S4 HMSs exhibit a significantly boosted CO2 photoreduction activity in comparison with bare In2S3 and Fe-In2S3 samples. This work demonstrates the great potential of heteroatom-engineered S-scheme photocatalysts for CO2 photoreduction.

10.
Small Methods ; 6(11): e2201099, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36251791

RESUMO

Development of cost-effective water splitting technology that allows low-overpotential operation at high current density with non-precious catalysts is the key for large-scale hydrogen production. Herein, it is demonstrated that the versatile perovskite-based oxides, usually applied for operating at low current density and room temperature in alkaline solution, can be developed into low-cost, highly active and durable electrocatalysts for operating at high current densities in a zero-gap anion exchange membrane electrolyzer cell (AEMEC). The composite perovskite with mixed phases of Ruddlesden-Popper and single perovskite is applied as the anode in AEMEC and exhibits highly promising performance with an overall water-splitting current density of 2.01 A cm-2 at a cell voltage of only 2.00 V at 60 °C with stable performance. The elevated temperature to promote anion diffusion in membrane boosts oxygen evolution kinetics by enhancing lattice-oxygen participation. The bifunctionality of perovskites further promises the more cost-effective symmetrical AEMEC configuration, and a primary cell with the composite perovskite as both electrodes delivers 3.00 A cm-2 at a cell voltage of only 2.42 V. This work greatly expands the use of perovskites as robust electrocatalysts for industrial water splitting at high current density with great practical application merit.

11.
ACS Appl Mater Interfaces ; 14(34): 38786-38794, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35973161

RESUMO

Intensive efforts have been taken to decrease the over-potentials of solid-state lithium batteries. Lowering the anode-electrolyte interface resistance is an effective method. Compared to simply improving the interface contact, constructing both ionically and electronically conductive phases within the anode demonstrates superior improvement in reducing the interface resistance and promoting electrochemical stability. However, complex preparation procedures are usually involved in the construction of the conductive phases and the loading of metallic lithium. Herein, a composite anode containing metallic lithium and well-dispersed ionically conductive Li3N and electronically conductive components (Fe, Fe3C, and amorphous carbon) shows an effective decrease in lithium stripping/plating over-potentials at high current densities of up to 3 mA cm-2. The unique dual ionically and electronically conductive phases exhibit good cycling stability for 3000 h. A full battery with the composite anode and a LiFePO4 cathode also demonstrates decent performance. This work confirms the importance of constructing dual conductive phases that are electrochemically stable to Li and will not be consumed during the electrochemical reaction and provides a facile preparation method. The new knowledge discovered and the new methods developed in this work would inspire the future development of new Li-containing composite anodes.

12.
Adv Sci (Weinh) ; 9(14): e2200530, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35306740

RESUMO

Oxygen evolution reaction (OER) is a key half-reaction in many electrochemical transformations, and efficient electrocatalysts are critical to improve its kinetics which is typically sluggish due to its multielectron-transfer nature. Perovskite oxides are a popular category of OER catalysts, while their activity remains insufficient under the conventional adsorbate evolution reaction scheme where scaling relations limit activity enhancement. The lattice oxygen-mediated mechanism (LOM) has been recently reported to overcome such scaling relations and boost the OER catalysis over several doped perovskite catalysts. However, direct evidence supporting the LOM participation is still very little because the doping strategy applied would introduce additional active sites that may mask the real reaction mechanism. Herein, a dopant-free, cation deficiency manipulation strategy to tailor the bulk diffusion properties of perovskites without affecting their surface properties is reported, providing a perfect platform for studying the contribution of LOM to OER catalysis. Further optimizing the A-site deficiency achieves a perovskite candidate with excellent intrinsic OER activity, which also demonstrates outstanding performance in rechargeable Zn-air batteries and water electrolyzers. These findings not only corroborate the key role of LOM in OER electrocatalysis, but also provide an effective way for the rational design of better catalyst materials for clean energy technologies.

13.
J Colloid Interface Sci ; 614: 538-546, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35121512

RESUMO

Semiconducting zinc oxide nanoparticles (ZnO NPs) hold great potential as photocatalysts in wastewater treatment because of their favorable bandgap and cost-effectiveness. Unfortunately, ZnO NPs usually show rapid charge recombination that limits their photocatalytic efficacy significantly. Herein, we report a facile way of modifying ZnO NPs with zeolite imidazole framework-8 (ZIF8). A synergy between the two components may tackle the drawback of fast charge recombination for pristine ZnO NPs. Improved performance of photocatalytic degradation of methylene blue (MB) is confirmed by comparing with pristine ZnO and ZIF8 as the catalysts. The ZIF8 in the composite serves as a trap for photogenerated electrons, thus reducing the rate of charge recombination to enhance the photocatalysis rate. In addition, the hybridization process suppresses the aggregation of ZnO NPs, providing a large surface area and a greater number of active sites. Moreover, a small shift in the absorption band of ZnO@ZIF8 (10) NPs towards higher wavelength, also witnessed a little contribution towards enhanced photocatalytic properties. Mechanistic studies of the photocatalytic process of MB using ZnO@ZIF8 NPs catalyst reveal that hydroxyl radicals are the major reactive oxygen species. The facile hybridization of ZnO with ZIF8 provides a strategy for developing new photocatalysts with wide application potential.


Assuntos
Nanopartículas , Zeolitas , Óxido de Zinco , Imidazóis , Recombinação Genética , Óxido de Zinco/química
14.
J Colloid Interface Sci ; 612: 298-307, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998190

RESUMO

Transition-metal sulfides have been recognized as one of the promising electrodes for high-performance hybrid supercapacitors (HSCs). However, the poor rate performance and short cycle life heavily impede their practical applications. Herein, an advanced electrode based on hierarchical porous cobalt-manganese-copper sulfide nanodisk arrays (Co-Mn-Cu-S HPNDAs) on Ni foam is fabricated for high-capacity HSCs, using metal-organic frameworks as the self-sacrificial template. The synergistic effects of ternary Co-Mn-Cu sulfides and the hierarchical porous structure endow the as-obtained electrode with fast redox reaction kinetics. As expected, the resultant Co-Mn-Cu-S HPNDAs electrode delivers an ultrahigh specific capacity of 536.8 mAh g-1 (3865 F g-1) at 2 A g-1 with a superb rate performance of 63% capacity retention at 30 A g-1. Remarkably, an energy density of 63.8 W h kg-1 at a power density of 743 W kg-1 with a long cycle life is also achieved with the quasi-solid-state Co-Mn-Cu-S HPNDAs//ZIF-8-derived carbon HSC. This work offers a new pathway to fabricate high-performance multiple transition-metal-sulfide-based electrode materials for energy storage devices.

15.
J Colloid Interface Sci ; 613: 764-774, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066234

RESUMO

Carrier separation and surface reaction kinetic are two main bottlenecks limiting photocatalytic efficiency of photocatalysts towards an industrial level. In this regard, heterostructures and defects engineering have been proven to be effective strategies for addressing the two issues. However, the integrated construction of heterostructures and defects has been reported rarely. Herein, a facile in-situ photodeposition strategy has been developed to grow CdS nanocrystals on MnO2-x nanorods with rich oxygen vacancies (VO) as a direct Z-scheme photocatalyst for boosting water oxidation. It has been found that the Cd2+ ions accept photoelectrons from MnO2-xunder irradiation for the in-situ growth of CdS nanocrystals, which enables a close contact between the two components, providing high-speed electron-transport channels for photocatalysis. Meanwhile, the photooxidation half reactions extract surface lattice oxygen, leading to the increase of VO content in MnO2-x, which supplies abundant active sites for oxygen evolution. Owing to the synergistic effects of VO and Z-scheme systems, the optimized MnO2-x/CdS photocatalyst displays a dramatically enhanced photocatalytic activity with an O2 production rate of 779 µmol g-1h-1 under visible-light irradiation without any cocatalysts, which is 2.33 times higher than the bare MnO2-x. This work reveals the cooperative manipulation of VO and CdS nanocrystals on MnO2-x for achieving efficient photocatalysis, providing new insights into the construction of high-performance photocatalysts via a combined strategy of Z-scheme heterostructures and surface defects.

16.
Small ; 17(49): e2103517, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34725919

RESUMO

Rational engineering electrode structure to achieve an efficient triple-phase contact line is vital for applications such as in zinc-air batteries and water electrolysis. Herein, a facile "MOF-in situ-leaching and confined-growth-MOF" strategy is developed to construct a breathable trifunctional electrocatalyst based on N-doped graphitic carbon with Co nanoparticles spatially confined in an inherited honeycomb-like macroporous structure (denoted as Co@HMNC). The unique orderly arranged macroporous channels and the "ships in a bottle" confinement effect jointly expedite the triple transport, endowing the catalysts with fast reaction kinetics. As a result, the obtained Co@HMNC catalyst presents superb trifunctional performance with a positive half-wave potential (E1/2 ) of 0.90 V for oxygen reduction reaction (ORR), and low overpotentials of 318 and 51 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) at 10 mA cm-2 , respectively. The Co@HMNC-based liquid Zn-air battery reaches a large specific capacity of 859 mA h gZn -1 , a high-power density of 198 mW cm-2 , and long-term stability for 375 h, suggesting its promise for actual applications.

17.
Sci Rep ; 11(1): 22506, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795355

RESUMO

Nutrient-deficient red soil found in the southern region of China is increasingly being used for potato crops to meet the demand for this staple food. The application of nitrogen fertilizer is necessary to support the production of higher tuber yields; however, the links between nitrate nitrogen and the nitrogen balance in red soil are unknown. A field experiment was conducted in Jiangxi Province in 2017 and 2018 to determine the effects of different nitrogen application rates, 0 kg ha-1 (N0), 60 kg ha-1 (N60), 120 kg ha-1 (N120), 150 kg ha-1 (N150), 180 kg ha-1 (N180), 210 kg ha-1 (N210), and 240 kg ha-1 (N240, the highest rate used by local farmers), on potatoes growing in red soil. Data on tuber yield, crop nitrogen uptake, and the apparent nitrogen balance from the different treatments were collected when potatoes were harvested. Additionally, the content and stock of nitrate nitrogen at different soil depths were also measured. Nitrogen fertilization increased tuber yield but not significantly at application rates higher than 150 kg ha-1. We estimated that the threshold rates of nitrogen fertilizer application were 191 kg ha-1 in 2017 and 227 kg ha-1 in 2018, where the respective tuber yields were 19.7 and 20.4 t ha-1. Nitrogen uptake in potato in all nitrogen fertilization treatments was greater than that in N0 by 61.2-237% and 76.4-284% in 2017 and 2018, respectively. The apparent nitrogen surplus (the amount of nitrogen remaining from any nitrogen input minus nitrogen uptake) increased with increasing nitrogen application rates. The nitrate nitrogen stock at a soil depth of 0-60 cm was higher in the 210 and 240 kg ha-1 nitrogen rate treatments than in the other treatments. Moreover, double linear equations indicated that greater levels of nitrogen surplus increased the nitrate nitrogen content and stock in soils at 0-60 cm depths. Therefore, we estimate that the highest tuber yields of potato can be attained when 191-227 kg ha-1 nitrogen fertilizer is applied to red soil. Thus, the risk of nitrate nitrogen leaching from red soil increases exponentially when the apparent nitrogen balance rises above 94.3-100 kg ha-1.

18.
J Colloid Interface Sci ; 602: 868-879, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34175635

RESUMO

Bifunctional photocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) have attracted growing interest to understand the mechanisms governing different evolution reactions, and the bifunctional activity of a single type of crystalline photocatalyst has gained especial attention. We herein report the high photocatalytic OER and HER activities of Bi2WO6 nanoplates (BWO NPs) which are synthesized by a simple hydrothermal method, and the switchable OER and HER performances controlled by the pH value of the precursor solvent. In the pH range from 4 to 9, the thickness of BWO NPs along the [001] direction exhibits interesting dependence on the pH value, which decreases as the pH value increases. Correspondingly, the BWO NPs obtained at the pH value of 7 (BWO-7) show the highest photocatalytic OER activity, while the BWO NPs synthesized at the pH value of 9 (BWO-9) exhibit the highest photoactivity towards HER. The electronic band structure analysis indicates that the highest photocatalytic OER activity is related to the band alignment of the valence band maximum of Bi2WO6, which determines the efficient separation of photogenerated electrons and holes as well as the fast charge transfer kinetics. The crystal facet evolution resulting from thickness reduction promotes the exposure of {001} facets for HER and decreases the exposure of {100} and {010} facets for OER. This work provides new insights into the combined effects of crystal facets and electronic band structures on photocatalysis.

19.
Small ; 17(29): e2101573, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34137160

RESUMO

Single-phase perovskite oxides that contain nonprecious metals have long been pursued as candidates for catalyzing the oxygen evolution reaction, but their catalytic activity cannot meet the requirements for practical electrochemical energy conversion technologies. Here a cation deficiency-promoted phase separation strategy to design perovskite-based composites with significantly enhanced water oxidation kinetics compared to single-phase counterparts is reported. These composites, self-assembled from perovskite precursors, comprise strongly interacting perovskite and related phases, whose structure, composition, and concentration can be accurately controlled by tailoring the stoichiometry of the precursors. The composite catalyst with optimized phase composition and concentration outperforms known perovskite oxide systems and state-of-the-art catalysts by 1-3 orders of magnitude. It is further demonstrated that the strong interfacial interaction of the composite catalysts plays a key role in promoting oxygen ionic transport to boost the lattice-oxygen participated water oxidation. These results suggest a simple and viable approach to developing high-performance, perovskite-based composite catalysts for electrochemical energy conversion.

20.
PLoS Comput Biol ; 17(6): e1009048, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34081706

RESUMO

Recently, an increasing number of studies have demonstrated that miRNAs are involved in human diseases, indicating that miRNAs might be a potential pathogenic factor for various diseases. Therefore, figuring out the relationship between miRNAs and diseases plays a critical role in not only the development of new drugs, but also the formulation of individualized diagnosis and treatment. As the prediction of miRNA-disease association via biological experiments is expensive and time-consuming, computational methods have a positive effect on revealing the association. In this study, a novel prediction model integrating GCN, CNN and Squeeze-and-Excitation Networks (GCSENet) was constructed for the identification of miRNA-disease association. The model first captured features by GCN based on a heterogeneous graph including diseases, genes and miRNAs. Then, considering the different effects of genes on each type of miRNA and disease, as well as the different effects of the miRNA-gene and disease-gene relationships on miRNA-disease association, a feature weight was set and a combination of miRNA-gene and disease-gene associations was added as feature input for the convolution operation in CNN. Furthermore, the squeeze and excitation blocks of SENet were applied to determine the importance of each feature channel and enhance useful features by means of the attention mechanism, thus achieving a satisfactory prediction of miRNA-disease association. The proposed method was compared against other state-of-the-art methods. It achieved an AUROC score of 95.02% and an AUPR score of 95.55% in a 10-fold cross-validation, which led to the finding that the proposed method is superior to these popular methods on most of the performance evaluation indexes.


Assuntos
Predisposição Genética para Doença , MicroRNAs/genética , Modelos Biológicos , Algoritmos , Humanos , Aprendizado de Máquina , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...