Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 89, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879488

RESUMO

BACKGROUND: Myocardial infarction (MI) leads to enhanced activity of cardiac fibroblasts (CFs) and abnormal deposition of extracellular matrix proteins, resulting in cardiac fibrosis. Tartrate-resistant acid phosphatase 5 (ACP5) has been shown to promote cell proliferation and phenotypic transition. However, it remains unclear whether ACP5 is involved in the development of cardiac fibrosis after MI. The present study aimed to investigate the role of ACP5 in post-MI fibrosis and its potential underlying mechanisms. METHODS: Clinical blood samples were collected to detect ACP5 concentration. Myocardial fibrosis was induced by ligation of the left anterior descending coronary artery. The ACP5 inhibitor, AubipyOMe, was administered by intraperitoneal injection. Cardiac function and morphological changes were observed on Day 28 after injury. Cardiac CFs from neonatal mice were extracted to elucidate the underlying mechanism in vitro. The expression of ACP5 was silenced by small interfering RNA (siRNA) and overexpressed by adeno-associated viruses to evaluate its effect on CF activation. RESULTS: The expression of ACP5 was increased in patients with MI, mice with MI, and mice with Ang II-induced fibrosis in vitro. AubipyOMe inhibited cardiac fibrosis and improved cardiac function in mice after MI. ACP5 inhibition reduced cell proliferation, migration, and phenotypic changes in CFs in vitro, while adenovirus-mediated ACP5 overexpression had the opposite effect. Mechanistically, the classical profibrotic pathway of glycogen synthase kinase-3ß (GSK3ß)/ß-catenin was changed with ACP5 modulation, which indicated that ACP5 had a positive regulatory effect. Furthermore, the inhibitory effect of ACP5 deficiency on the GSK3ß/ß-catenin pathway was counteracted by an ERK activator, which indicated that ACP5 regulated GSK3ß activity through ERK-mediated phosphorylation, thereby affecting ß-catenin degradation. CONCLUSION: ACP5 may influence the proliferation, migration, and phenotypic transition of CFs, leading to the development of myocardial fibrosis after MI through modulating the ERK/GSK3ß/ß-catenin signaling pathway.


Assuntos
Proliferação de Células , Fibrose , Infarto do Miocárdio , Fosfatase Ácida Resistente a Tartarato , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Camundongos , Humanos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fosfatase Ácida Resistente a Tartarato/genética , Masculino , Modelos Animais de Doenças , Fibroblastos/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Movimento Celular
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460862

RESUMO

Hypertension, a prevalent cardiovascular ailment globally, can precipitate numerous complications, notably hypertensive cardiomyopathy. Meteorin-like (METRNL) is demonstrated to possess potential protective properties on cardiovascular diseases. However, its specific role and underlying mechanism in hypertensive myocardial hypertrophy remain elusive. Spontaneously hypertensive rats (SHRs) served as hypertensive models to explore the effects of METRNL on hypertension and its induced myocardial hypertrophy. The research results indicate that, in contrast to Wistar-Kyoto (WKY) rats, SHRs exhibit significant symptoms of hypertension and myocardial hypertrophy, but cardiac-specific overexpression (OE) of METRNL can partially ameliorate these symptoms. In H9c2 cardiomyocytes, METRNL suppresses Ang II-induced autophagy by controlling the BRCA2/Akt/mTOR signaling pathway. But when BRCA2 expression is knocked down, this effect will be suppressed. Collectively, METRNL emerges as a potential therapeutic target for hypertensive cardiomyopathy.


Assuntos
Cardiomiopatias , Hipertensão , Ratos , Animais , Ratos Endogâmicos WKY , Cardiomegalia/genética , Cardiomegalia/tratamento farmacológico , Hipertensão/complicações , Hipertensão/genética , Hipertensão/tratamento farmacológico , Ratos Endogâmicos SHR , Miócitos Cardíacos/metabolismo , Cardiomiopatias/metabolismo , Autofagia/genética
3.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38212288

RESUMO

Resting heart rate (RHR) has been linked to impaired cortical structure in observational studies. However, the extent to which this association is potentially causal has not been determined. Using genetic data, this study aimed to reveal the causal effect of RHR on brain cortical structure. A Two-Sample Mendelian randomization (MR) analysis was conducted. Sensitivity analyses, weighted median, MR Pleiotropy residual sum and outlier, and MR-Egger regression were conducted to evaluate heterogeneity and pleiotropy. A causal relationship between RHR and cortical structures was identified by MR analysis. On the global scale, elevated RHR was found to decrease global surface area (SA; P < 0.0125). On a regional scale, the elevated RHR significantly decreased the SA of pars triangularis without global weighted (P = 1.58 × 10-4) and the thickness (TH) of the paracentral with global weighted (P = 3.56 × 10-5), whereas it increased the TH of banks of the superior temporal sulcus in the presence of global weighted (P = 1.04 × 10-4). MR study provided evidence that RHR might be causally linked to brain cortical structure, which offers a different way to understand the heart-brain axis theory.


Assuntos
Encéfalo , Análise da Randomização Mendeliana , Frequência Cardíaca , Encéfalo/diagnóstico por imagem , Córtex Pré-Frontal , Área de Broca , Estudo de Associação Genômica Ampla
4.
iScience ; 26(9): 107601, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664606

RESUMO

Diabetic foot ulcer (DFU) is a serious complication of diabetes. Elabela (ELA), a ligand of apelin receptor (APJ), was shown to promote angiogenesis and suppress inflammation. This study aimed to illustrate the role of ELA in DFU wound healing. A whole-skin defect model was constructed using db/m and db/db mice to observe the effects of ELA on wound healing. The function of ELA in endothelial cells cultured in high glucose medium was investigated. Administration of ELA in peri-wound area of db/db mice accelerated wound closure and reduced inflammatory infiltration. Indicators of DNA damage, elevated reactive oxygen species (ROS) levels and tail DNA amounts, were downregulated by ELA but compromised after TRAF1 overexpression. ELA-mediated inhibition of NF-κB phosphorylation improved cell migration and angiogenesis, which were blocked by APJ silencing. The findings imply that ELA suppresses TRAF1-mediated NF-κB signal activation, reducing ROS-related oxidative DNA damage and improving protection of endothelial function.

5.
Nanomaterials (Basel) ; 10(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604854

RESUMO

The propose of this review was to summarize the advances in multi-scale surface technology of titanium implants to accelerate the osseointegration process. The several multi-scaled methods used for improving wettability, roughness, and bioactivity of implant surfaces are reviewed. In addition, macro-scale methods (e.g., 3D printing (3DP) and laser surface texturing (LST)), micro-scale (e.g., grit-blasting, acid-etching, and Sand-blasted, Large-grit, and Acid-etching (SLA)) and nano-scale methods (e.g., plasma-spraying and anodization) are also discussed, and these surfaces are known to have favorable properties in clinical applications. Functionalized coatings with organic and non-organic loadings suggest good prospects for the future of modern biotechnology. Nevertheless, because of high cost and low clinical validation, these partial coatings have not been commercially available so far. A large number of in vitro and in vivo investigations are necessary in order to obtain in-depth exploration about the efficiency of functional implant surfaces. The prospective titanium implants should possess the optimum chemistry, bionic characteristics, and standardized modern topographies to achieve rapid osseointegration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...