Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(24): e2309068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477060

RESUMO

To accelerate the pace in the field of photothermal therapy (PTT), it is urged to develop easily accessible photothermal agents (PTAs) showing high photothermal conversion efficiency (PCE). As a proof-of-concept, hereby a conventional strategy is presented to prepare donor-acceptor (D-A) structured PTAs through cycloaddition-retroelectrocyclization (CA-RE) reaction, and the resultant PTAs give high PCE upon near-infrared (NIR) irradiation. By joint experimental-theoretical study, these PTAs exhibit prominent D-A structure with strong intramolecular charge transfer (ICT) characteristics and significantly twisting between D and A units which account for the high PCEs. Among them, the DMA-TCNQ exhibits the strongest absorption in NIR range as well as the highest PCE of 91.3% upon irradiation by 760-nm LED lamp (1.2 W cm-2). In vitro and in vivo experimental results revealed that DMA-TCNQ exhibits low dark toxicity and high phototoxicity after IR irradiation along with nude mice tumor inhibition up to 81.0% through intravenous therapy. The findings demonstrate CA-RE reaction as a convenient approach to obtain twisted D-A structured PTAs for effective PTT and probably promote the progress of cancer therapies.


Assuntos
Camundongos Nus , Terapia Fototérmica , Animais , Terapia Fototérmica/métodos , Camundongos , Modelos Animais de Doenças , Humanos , Linhagem Celular Tumoral , Raios Infravermelhos/uso terapêutico , Neoplasias/terapia
2.
JACS Au ; 3(6): 1711-1722, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37388679

RESUMO

We apply a versatile reaction to a versatile solid: the former involves the electron-deficient alkene tetracyanoethylene (TCNE) as the guest reactant; the latter consists of stacked 2D honeycomb covalent networks based on the electron-rich ß-ketoenamine hinges that also activate the conjugated, connecting alkyne units. The TCNE/alkyne reaction is a [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) that forms strong push-pull units directly into the backbone of the framework-i.e., using only the minimalist "bare-bones" scaffold, without the need for additional side groups of alkynes or other functions. The ability of the stacked alkyne units (i.e., as part of the honeycomb mass) to undergo such extensive rearrangement highlights the structural flexibility of these covalent organic framework (COF) hosts. The COF solids remain porous, crystalline, and air-/water-stable after the CA-RE modification, while the resulting push-pull units feature distinct open-shell/free-radical character, are strongly light-absorbing, and shift the absorption ends from 590 nm to around 1900 nm (band gaps from 2.17-2.23 to 0.87-0.95 eV), so as to better capture sunlight (especially the infrared region which takes up 52% of the solar energy). As a result, the modified COF materials achieve the highest photothermal conversion performances, holding promise in thermoelectric power generation and solar steam generation (e.g., with solar-vapor conversion efficiencies >96%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...