Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; 26(10): 585-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053645

RESUMO

Cross-linking plays an important role in tissue engineering, which involves the alternative of cross-linker and the way of components interaction. We compared two proanthocyanidin (PA) cross-linked recombinant human collagen-peptide - chitosan scaffolds: immerse cross-linking (I-CLS) and premix cross-linking (P-CLS). Both of the scaffolds presented homogeneous pore structure with mean pore size of 110-115 µm. The swelling ratio was decreased to 29.6 in I-CLS, but increased to 37.1 in P-CLS while porosity of the two scaffolds was reduced about 8% comparing to 94.3% before cross-linking. The cross-linked scaffolds exhibited enhanced resistance to enzyme degradation and improved compressive modulus (I-CLS > P-CLS). The scaffolds transformed from elastic region to plastic region until the strain reached 60%, and the stress was 40.5, 133.2 and 84.1 kPa of uncross-linking scaffold, I-CLS and P-CLS individually. Thermal stability indicated molecular bonding between PA and the scaffold components, simultaneously, Fourier transform infrared spectroscopy mainly presented hydrogen bonding between the protein amide carbonyl and the phenolic hydroxyl with a particular transform due to pyrrolidine rings of proline in P-CLS. Both of the I-CLS and P-CLS could promote human umbilical vein endothelial cells attachment and proliferation. The characterization suggested in situ biodegradable application of P-CLS, while a potential long-term utilization of I-CLS in tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Colágeno/química , Peptídeos/química , Proantocianidinas/farmacologia , Proteínas Recombinantes/química , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Teste de Materiais , Fenômenos Mecânicos , Porosidade , Estabilidade Proteica , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Pele Artificial , Temperatura , Engenharia Tecidual , Cicatrização/efeitos dos fármacos
2.
Mater Sci Eng C Mater Biol Appl ; 49: 174-182, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25686937

RESUMO

Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide-chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (Tf) and cooling rates was applied to obtain scaffolds with pore size ranging from 100µm to 120µm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of Tf at a slow cooling rate of 0.7°C/min; a more rapid cooling rate under 5°C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC-chitosan scaffolds with appropriate pores for potential tissue engineering.


Assuntos
Quitosana/química , Colágeno/genética , Liofilização , Alicerces Teciduais , Colágeno/química , Humanos , Microscopia Eletrônica de Varredura , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...