Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 136: 108700, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36966895

RESUMO

In recent years, the widespread use of antibiotics in intensive grouper mariculture has resulted in the ineffectiveness of antibiotic treatment, leading to an increasing incidence of diseases caused by bacteria, viruses, and parasites, causing serious economic losses. Hence, it is crucial to develop alternative strategies to antibiotics for healthy and sustainable development of the mariculture industry. Here, we aimed to screen host gut-derived probiotics and evaluate its effects on growth and immunity of grouper. In this study, 43 bacterial strains were isolated from the intestine of the hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂), and a potential probiotic strain G1-26, which can efficiently secrete amylase, protease, and lipase, was obtained using different screening mediums. Based on 16S rDNA sequencing, the potential probiotic strain G1-26 was identified as Vibrio fluvialis. The results of a biological characteristic evaluation showed that V. fluvialis G1-26 could grow at 25-45 °C, pH 5.5-7.5, salinity 10-40, and bile salt concentration 0-0.030%, and produce amylase, lipase, and protease under different culture conditions. Additionally, V. fluvialis G1-26 is sensitive to many antibiotics and does not exhibit aquatic biotoxicity. Subsequently, hybrid groupers were fed diets containing V. fluvialis G1-26 at different concentrations (0, 106, 108, and 1010 CFU/g) for 60 d. The results showed that V. fluvialis G1-26 at 108 CFU/g did not significantly affect the growth performance of the hybrid grouper (P > 0.05). V. fluvialis G1-26 supplementation at 108 and 1010 CFU/g significantly promoted the relative expression of immune-related genes in hybrid groupers (TLR3, TLR5, IL-1ß, IL-8, IL-10, CTL, LysC, TNF-2, and MHC-2) and improved the activities of alkaline phosphatase, acid phosphatase, total superoxide dismutase, and total protein in the liver. In conclusion, V. fluvialis G1-26, a potential probiotic strain isolated from the intestine of the hybrid grouper, can be used as an effective immunopotentiator at an optimal dose of 108 CFU/g diet. Our results provide a scientific basis for the development and utilization of probiotics in the grouper mariculture industry.


Assuntos
Bass , Probióticos , Animais , Antioxidantes/metabolismo , Dieta/veterinária , Probióticos/farmacologia , Peptídeo Hidrolases , Amilases , Lipase , Ração Animal/análise
2.
Front Physiol ; 13: 1049776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406980

RESUMO

Hypoxia is a critical problem in intensive Epinephelus coioides aquaculture systems. In the present study, the physiological responses of E. coioides muscle to acute hypoxic stress (DO = 0.6 ± 0.1 mg/L) and reoxygenation (DO = 6.0 ± 0.1 mg/L) were analyzed by transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR). RNA-seq was conducted on the muscle tissues of E. coioides in the hypoxia-tolerant (EMS), hypoxia-sensitive (EMW), and normoxic (CM) groups. Among the three groups, a total of 277 differentially expressed genes (DEGs) were identified. KEGG analysis revealed that the pathways significantly enriched after hypoxic stress are involved in the immune response, glycolysis/gluconeogenesis, energy metabolism, vasodilation and proliferation, cell proliferation, and apoptosis. qRT‒PCR verified that the differentially expressed genes FIH-1, PHD-2, PPARα, BCL-XL, LDH-A, and Flt-1 were significantly upregulated after hypoxic stress and returned to normal levels after reoxygenation, suggesting that these DEGs play important roles in responding to hypoxia treatment. In addition, the HIF-1 signaling pathway was also activated under hypoxic stress, and qRT‒PCR confirmed that the expression level of HIF-1α was significantly elevated under acute hypoxic stress, indicating that the HIF-1 signaling pathway is the central pathway in the E. coioides hypoxic response mechanism and activates other related pathways to adapt to hypoxic stress. These pathways jointly regulate energy metabolism, substance synthesis, blood vessel proliferation, cell proliferation, and differentiation and prolong survival time. These results provide ideas for understanding physiological regulation after hypoxic stress and reoxygenation and provide basic insights for the future breeding of hypoxia-tolerant E. coioides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...