Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(47): e2303185, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37490550

RESUMO

Sn-based electrocatalysts have great economic potential in the reduction of CO2 to HCOOH, while they still suffer from low current density, dissatisfactory selectivity, and poor stability. Inspired by electronic modification engineering, boron-doped SnO2 nanospheres (B-SnO2 ) are successfully synthesized to achieve high-efficiency CO2 reduction reaction (CO2 RR). It is found that the introduction of boron dopants can increase the number of active sites and facilitate the formation of the electron-rich Sn sites in its structure, thus enhancing the activation of CO2 molecules and reducing the energy barrier of *OCHO intermediates on the SnO2 surface. Thus, the B-doped SnO2 electrocatalyst exhibits a remarkable FEHCOOH above 90% within a broad potential window of -0.7 to -1.3 V versus reversible hydrogen electrode (RHE) (600 mV) and obtains the maximum value of 95.1% (the partial current density of HCOOH is 42.35 mA cm-2 ) at -1 V versus RHE. In conclusion, this work provides a novel strategy for optimizing the intrinsic properties of electrocatalysts for CO2 RR by the method of tuning the electronic structure.

2.
J Environ Sci (China) ; 125: 194-204, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375905

RESUMO

Sb(III) is often detected in contaminated soil and groundwater. Hence, high-efficiency technology is needed. In this study, bimetallic organic frameworks were used for the first time to immobilize Sb(III) from contaminated soil and groundwater. The materials were synthesized by the hydrothermal method. Both ends of the prepared material were hexagonal tip rods, and the length became shorter as the ratio of Fe/Mg decreased. The bimetallic organic framework with a Fe/Mg feeding ratio of 0.5 was the optimum material for Sb(III) removal, which could effectively immobilize Sb(III). The adsorption isotherm was fitted well with the Freundlich model, and the optimal adsorption capacity can reach 106.97 mg/g. The adsorption capacity of 84% can be completed in 10 min, which conformed to the pseudo-second-order kinetics. The Fe3+ could enhance the stability of the material, and the Mg2+ was conducive to freeing up adsorption sites for binding Sb(III) and forming stable chemical adsorption. Ion exchange is the predominant mechanism to remove Sb(III). After 14 days of remediation of Sb(III) contaminated soil, the Toxicity Characteristic Leaching Procedure (TCLP)-leached concentrations of Sb(III) were reduced by 86%, 91% and 94% when the material dosages were 1%, 2% and 3%, respectively. Immobilization of Sb(III) in soil resulted in a conversion of antimony speciation from more easily bioavailable species to less bioavailable species, further contributing to reduce the environmental risk of antimony. The results indicate that ferro-magnesium bimetallic organic frameworks may serve as a kind of promising materials for the immobilization of Sb(III) in contaminated soil and groundwater.


Assuntos
Água Subterrânea , Poluentes do Solo , Antimônio/análise , Solo , Magnésio , Poluentes do Solo/análise , Adsorção
3.
ACS Nano ; 16(11): 19210-19219, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36255287

RESUMO

Using the electrochemical CO2 reduction reaction (CO2RR) with Cu-based electrocatalysts to achieve carbon-neutral cycles remains a significant challenge because of its low selectivity and poor stability. Modulating the surface electron distribution by defects engineering or doping can effectively improve CO2RR performance. Herein, we synthesize the electrocatalyst of Vo-CuO(Sn) nanosheets containing oxygen vacancies and Sn dopants for application in CO2RR-to-CO. Density functional theory calculations confirm that the incorporation of oxygen vacancies and Sn atoms substantially reduces the energy barrier for *COOH and *CO intermediate formation, which results in the high efficiency, low overpotential, and superior stability of the CO2RR to CO conversion. This electrocatalyst possesses a high Faraday efficiency (FE) of 99.9% for CO at a low overpotential of 420 mV and a partial current density of up to 35.22 mA cm-2 at -1.03 V versus reversible hydrogen electrode (RHE). The FECO of Vo-CuO(Sn) could retain over 95% within a wide potential area from -0.48 to -0.93 V versus RHE. Moreover, we obtain long-term stability for more than 180 h with only a slight decay in its activity. Therefore, this work provides an effective route for designing environmentally friendly electrocatalysts to improve the selectivity and stability of the CO2RR to CO conversion.

4.
Small ; 16(38): e2002985, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32812346

RESUMO

Direct photoconversion of low-concentration CO2 into a widely tunable syngas (i.e., CO/H2 mixture) provides a feasible outlet for the high value-added utilization of anthropogenic CO2 . However, in the low-concentration CO2 photoreduction system, it remains a huge challenge to screen appropriate catalysts for efficient CO and H2 production, respectively, and provide a facile parameter to tune the CO/H2 ratio in a wide range. Herein, by engineering the metal sites on the covalent organic frameworks matrix, low-concentration CO2 can be efficiently photoconverted into tunable syngas, whose CO/H2 ratio (1:19-9:1) is obviously wider than reported systems. Experiments and density functional theory calculations indicate that Fe sites serve as the H2 evolution sites due to the much stronger binding affinity to H2 O, while Ni sites act as the CO production sites for the higher affinity to CO2 . Notably, the widely tunable syngas can also be produced over other Fe/Ni-based bimetal catalysts, regardless of their structures and supporting materials, confirming the significant role of the metal sites in regulating the selectivity of CO2 photoreduction and providing a modular design strategy for syngas production.

5.
Environ Res ; 186: 109489, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32311525

RESUMO

Pollution and remediation of antimony in aquatic ecosystems have been paid increasing attention. In the present work, environmentally friendly nano-MgO was used for the first time to remove Sb(III) from the water system. The batch experiments indicated that the nano-MgO calcined at 400 °C (named 400-MgO) exhibited superior adsorption capacity for Sb(III). The adsorption isotherm was fitted well with the Freundlich model, and especially when the initial concentration is 15 mg‧L-1, the adsorption capacity is as high as 140.1 mg‧g-1. Researches through X-ray diffraction (XRD), Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) showed that the main removal mechanisms lie in the generation of Mg active sites, which is capable of coordinating Sb(III), during the hydration process of MgO, providing a nucleation center for the progressive production of MgSb2O4. As a whole, precipitation is the predominant mechanism for MgO to remove Sb(III). Over time, a part of MgO is hydrated to Mg(OH)2, and consequent chemisorption also helps to remove Sb(III). Our work has demonstrated that nano-MgO is a promising adsorbent for Sb(III) removal from contaminated water and provided new insights into the interaction mechanism between MgO and Sb(III).


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Ecossistema , Cinética , Óxido de Magnésio , Poluentes Químicos da Água/análise
6.
J Hazard Mater ; 393: 122296, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32126421

RESUMO

The recovery of heavy metals from industrial solid waste is of great significance for simultaneously alleviating heavy metal pollution and recycling valuable metal resources. However, the complex compositions of the multiple metallic electroplating waste severely limit the selective recovery of metal resources such as nickel. In this study, a kind of nickel-laden electroplating sludge was taken as an example and the Ni in it was targetedly converted into highly valuable NiFe2O4 (nickel ferrite) nanomaterials via a regulator assisted hydrothermal acid-washing strategy, eventually leading to selective extraction of Ni and Ca from the sludge. Sodium carbonate was the best regulator for the formation of NiFe2O4, and under the optimal conditions, the extraction rates of Ni and Ca are 96.70 % and 99.66 %, respectively. The as-prepared NiFe2O4 nanoparticles exhibited stable electrochemical Li-storage performances, such as a reversible capacity of approximate 316.94 mA h/g at 0.5 A/g and a long cycle life exceeding 100 cycles, with nearly no capacity decay. This work provides a facile and sustainable approach for targeted conversion of heavy metals in industrial solid waste to high-valuable functional materials and selective recovery of heavy metals from multi-metal solid wastes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...