Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 551, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014378

RESUMO

BACKGROUND: The high prevalence of diabetic kidney disease (DKD) in the United States necessitates further investigation into its impact on complications associated with total hip arthroplasty (THA). This study utilizes a large nationwide database to explore risk factors in DKD cases undergoing THA. METHODS: This research utilized a case-control design, leveraging data from the national inpatient sample for the years 2016 to 2019. Employing propensity score matching (PSM), patients diagnosed with DKD were paired on a 1:1 basis with individuals free of DKD, ensuring equivalent age, sex, race, Elixhauser Comorbidity Index (ECI), and insurance coverage. Subsequently, comparisons were drawn between these PSM-matched cohorts, examining their characteristics and the incidence of post-THA complications. Multivariate logistic regression analysis was then employed to evaluate the risk of early complications after surgery. RESULTS: DKD's prevalence in the THA cohort was 2.38%. A 7-year age gap separated DKD and non-DKD patients (74 vs. 67 years, P < 0.0001). Additionally, individuals aged above 75 exhibited a substantial 22.58% increase in DKD risk (49.16% vs. 26.58%, P < 0.0001). Notably, linear regression analysis yielded a significant association between DKD and postoperative acute kidney injury (AKI), with DKD patients demonstrating 2.274-fold greater odds of AKI in contrast with non-DKD individuals (95% CI: 2.091-2.473). CONCLUSIONS: This study demonstrates that DKD is a significant risk factor for AKI in patients undergoing total hip arthroplasty. Optimizing preoperative kidney function through appropriate interventions might decrease the risk of poor prognosis in this population. More prospective research is warranted to investigate the potential of targeted kidney function improvement strategies in reducing AKI rates after THA. The findings of this study hold promise for enhancing preoperative counseling by surgeons, enabling them to provide DKD patients undergoing THA with more precise information regarding the risks associated with their condition.


Assuntos
Artroplastia de Quadril , Bases de Dados Factuais , Nefropatias Diabéticas , Complicações Pós-Operatórias , Humanos , Artroplastia de Quadril/efeitos adversos , Masculino , Feminino , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Idoso , Pessoa de Meia-Idade , Nefropatias Diabéticas/epidemiologia , Estudos de Casos e Controles , Estados Unidos/epidemiologia , Fatores de Risco , Procedimentos Cirúrgicos Eletivos/efeitos adversos , Procedimentos Cirúrgicos Eletivos/tendências , Prevalência , Idoso de 80 Anos ou mais , Incidência
2.
Foods ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38890862

RESUMO

Obesity is a multifactorial chronic metabolic disease with multiple complications. Crataegus pinnatifida (CP) and Wolfiporia extensa (WE) are traditional functional foods with improving metabolic health properties. This study demonstrated the effect of CP and WE combination on ameliorating obesity induced by a high-fat diet (HFD). Moreover, the CP-WE food pair ameliorated HFD-induced metabolic disorders, including glucose intolerance, insulin resistance, hyperlipidemia, and hepatic steatosis. 16S rRNA gene amplicon sequencing and analysis revealed that CP combined with WE reshaped the composition of gut microbiota in HFD-fed mice. Furthermore, correlation analysis revealed a substantial association between the obesity-related parameters and the shifts in predominant bacterial genera influenced by the food pair intervention. In conclusion, this study demonstrated that the CP-WE food pair ameliorated HFD-induced obesity and reshaped gut microbiota composition, providing a promising approach to combat obesity through specific food combinations.

3.
Foods ; 13(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38790887

RESUMO

In this study, electronic sensory techniques were employed to comprehensively evaluate the organoleptic quality, chemical composition and content change rules for Polygonatum cyrtonema Hua (PCH) during the steaming process. The results were subjected to hierarchical cluster analysis (HCA), principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). These analyses revealed, from a sensory product perspective, overall differences in colour, odour and taste among the samples of PCH with different numbers of steaming cycles. Using the UPLC-Q-Exactive Orbitrap MS technique, 64 chemical components, including polysaccharides, organic acids, saponins and amino acids were detected in PCH before and after steaming. The sensory traits were then correlated with the chemical composition. From the perspectives of sensory traits, chemical composition, and multi-component index content, it was preliminarily deduced that carrying out five cycles of steaming and sun-drying was optimal, providing evidence for the quality evaluation of PCH during the steaming process.

4.
Parasit Vectors ; 17(1): 207, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720339

RESUMO

BACKGROUND: Schistosomiasis is a neglected tropical disease that afflicts millions of people worldwide; it is caused by Schistosoma, the only dioecious flukes with ZW systems. Schistosoma japonicum is endemic to Asia; the Z chromosome of S. japonicum comprises one-quarter of the entire genome. Detection of positive selection using resequencing data to understand adaptive evolution has been applied to a variety of pathogens, including S. japonicum. However, the contribution of the Z chromosome to evolution and adaptation is often neglected. METHODS: We obtained 1,077,526 high-quality SNPs on the Z chromosome in 72 S. japonicum using re-sequencing data publicly. To examine the faster Z effect, we compared the sequence divergence of S. japonicum with two closely related species, Schistosoma haematobium and S. mansoni. Genetic diversity was compared between the Z chromosome and autosomes in S. japonicum by calculating the nucleotide diversity (π) and Dxy values. Population structure was also assessed based on PCA and structure analysis. Besides, we employed multiple methods including Tajima's D, FST, iHS, XP-EHH, and CMS to detect positive selection signals on the Z chromosome. Further RNAi knockdown experiments were performed to investigate the potential biological functions of the candidate genes. RESULTS: Our study found that the Z chromosome of S. japonicum showed faster evolution and more pronounced genetic divergence than autosomes, although the effect may be smaller than the variation among genes. Compared with autosomes, the Z chromosome in S. japonicum had a more pronounced genetic divergence of sub-populations. Notably, we identified a set of candidate genes associated with host-parasite co-evolution. In particular, LCAT exhibited significant selection signals within the Taiwan population. Further RNA interference experiments suggested that LCAT is necessary for S. japonicum survival and propagation in the definitive host. In addition, we identified several genes related to the specificity of the intermediate host in the C-M population, including Rab6 and VCP, which are involved in adaptive immune evasion to the host. CONCLUSIONS: Our study provides valuable insights into the adaptive evolution of the Z chromosome in S. japonicum and further advances our understanding of the co-evolution of this medically important parasite and its hosts.


Assuntos
Variação Genética , Interações Hospedeiro-Parasita , Schistosoma japonicum , Animais , Schistosoma japonicum/genética , Interações Hospedeiro-Parasita/genética , Evolução Molecular , Polimorfismo de Nucleotídeo Único , Cromossomos Sexuais/genética , Seleção Genética , Schistosoma haematobium/genética , Schistosoma mansoni/genética , Evolução Biológica , Esquistossomose Japônica/parasitologia
5.
Org Lett ; 26(20): 4262-4267, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38722897

RESUMO

A novel Pd-catalyzed three-component domino reaction for the stereoselective synthesis of highly functionalized allyl cinnamates has been developed. In this protocol, a sequential process of C-C bond activation and intermolecular allylic substitution was well-organized. The key for this transformation is the in situ generated hydrolysis product of cyclopropenone, which triggered a new reaction with vinylethylene carbonates. The reaction mechanism was investigated, demonstrating the high stereoselectivity and excellent atomic economy in this process.

6.
J Pharm Biomed Anal ; 246: 116255, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795427

RESUMO

Wilson disease (WD) is an inherited disorder characterized by abnormal copper metabolism with complex pathological features. Currently, this mechanism of copper overload-induced hepatic injury remains unclear. In this study, male toxic milk (TX) mice were selected as experimental subjects. Copper levels and biochemical indices were measured by atomic absorption spectroscopy (AAS) and kits. Liver tissue ultrastructure was observed by hematoxylin-eosin (H&E), sirius red staining and transmission electron microscopy. Plasma and liver metabolic profiles of TX mice were characterized by untargeted metabolomics. In addition, the expression of enzymes related to arachidonic acid metabolism in liver tissue was detected by Western blotting. The results showed the excessive copper content, concomitant oxidative stress, and hepatic tissue structural damage in TX mice. Seventy-eight metabolites were significantly different in WD, mainly involved in the metabolism of arachidonic acid, glycerophospholipids, sphingolipids, niacin and nicotinamide, and phenylalanine. Furthermore, the arachidonic acid metabolic pathway is an important pathway involved in WD metabolism. The level of arachidonic acid in the liver of TX mice was significantly lower (p < 0.01) compared to the control group. The expression of cytoplasmic phospholipase A2 (cPLA2) and arachidonic acid 12-lipoxygenase (ALOX12), related to the arachidonic acid metabolic pathway, was significantly different in the liver of TX mice (p < 0.01). Modulation of the arachidonic acid metabolic pathway could be a potential therapeutic strategy to alleviate WD symptoms.


Assuntos
Cobre , Modelos Animais de Doenças , Degeneração Hepatolenticular , Fígado , Metabolômica , Animais , Degeneração Hepatolenticular/metabolismo , Camundongos , Fígado/metabolismo , Masculino , Metabolômica/métodos , Cobre/metabolismo , Ácido Araquidônico/metabolismo , Estresse Oxidativo , Leite/metabolismo
7.
Front Mol Neurosci ; 17: 1394171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562165
8.
Phytomedicine ; 128: 155341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518636

RESUMO

BACKGROUND: Atherosclerosis (AS) is a chronic disease characterized by lipid accumulation in the aortic wall and the formation of foam cells overloaded with large lipids inclusions. Currently, Western medicine is primarily used to improve lipid metabolism disorders and reduce inflammatory reactions to delay AS progression, but these medicines come with serious side effects and drug resistance. Gualou-Xiebai (GLXB) is a renowned herb pair that has been proven effective against AS. However, the potential molecular mechanism through which GLXB exerts the anti-atherosclerotic effects of increasing lipophagy in vascular smooth muscle cells (VSMCs) remains unknown. PURPOSE: This study aims to explore the role of lipophagy and the therapeutic mechanism of GLXB in AS. METHODS: UPLC-Q-TOF-MS for the determination of the main components of GLXB-containing serum. An AS mouse model was established by feeding a high-fat diet (HFD) to ApoE-/- mice for 12 weeks. Ultrasonography monitoring was used to confirm the successful establishment of the AS model. Plaque areas and lipid deposition were evaluated using HE staining and aorta imagingafter GLXB treatment. Immunofluorescence staining and Western blotting were utilized to observe the P2RY12 and lipophagy levels in AS mice. VSMCs were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. The degree of lipophagy and the related molecular mechanisms were assessed after treating the VSMCs with GLXB-containing serum or si-P2RY12 transfection. The active components of GLXB-containing serum that act on P2RY12 were screened and verified by molecular docking and dual-luciferase reporter assays. RESULTS: Seventeen components of GLXB were identified in rat serum by UPLC-Q-TOF-MS. GLXB significantly reduced lipid deposition in HFD-fed ApoE-/- mice and ox-LDL-induced VSMCs. GLXB strikingly increased lipophagy levels by downregulating P2RY12, p62, and plin2, upregulating LC3Ⅱ protein expression, and increasing the number of autophagosomes. Notably, the lipophagy inhibitor CQ and the P2RY12 receptor agonist ADPß abolished the GLXB-induced increase in lipophagy. Last, we confirmed that albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin from GLXB significantly inhibited P2RY12. CONCLUSION: GLXB activates lipophagy and inhibits lipid accumulation-associated VSMC-derived foam cell formation through suppressing P2RY12 activation, resulting in anti-atherosclerotic effects. The GLXB components albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin are the potential active effectors against P2RY12.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Células Espumosas , Músculo Liso Vascular , Receptores Purinérgicos P2Y12 , Animais , Aterosclerose/tratamento farmacológico , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Masculino , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Receptores Purinérgicos P2Y12/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Modelos Animais de Doenças , Autofagia/efeitos dos fármacos , Ratos Sprague-Dawley , Metabolismo dos Lipídeos/efeitos dos fármacos , Aorta/efeitos dos fármacos , Lipoproteínas LDL/metabolismo
9.
Inorg Chem ; 63(10): 4758-4769, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38408314

RESUMO

The efficiency of nitrogen mustards (NMs), among the first chemotherapeutic agents against cancer, is limited by their monotonous mechanism of action (MoA). And tumor hypoxia is a significant obstacle in the attenuation of the chemotherapeutic efficacy. To repurpose the drug and combat hypoxia, herein, we constructed an organo-Ir(III) prodrug, IrCpNM, with the composition of a reactive oxygen species (ROS)-inducing moiety (Ir-arene fragment)-a hypoxic responsive moiety (azo linker)-a DNA-alkylating moiety (nitrogen mustard), and realized DNA damage response (DDR)-mediated autophagy for hypoxic lung cancer therapy for the first time. Prodrug IrCpNM could upregulate the level of catalase (CAT) to catalyze the decomposition of excessive H2O2 to O2 and downregulate the expression of the hypoxia-inducible factor (HIF-1α) to relieve hypoxia. Subsequently, IrCpNM initiates the quadruple synergetic actions under hypoxia, as simultaneous ROS promotion and glutathione (GSH) depletion to enhance the redox disbalance and severe oxidative and cross-linking DNA damages to trigger the occurrence of DDR-mediated autophagy via the ATM/Chk2 cascade and the PIK3CA/PI3K-AKT1-mTOR-RPS6KB1 signaling pathway. In vitro and in vivo experiments have confirmed the greatly antiproliferative capacity of IrCpNM against the hypoxic solid tumor. This work demonstrated the effectiveness of the DNA damage-responsive organometallic prodrug strategy with the microenvironment targeting system and the rebirth of traditional chemotherapeutic agents with a new anticancer mechanism.


Assuntos
Neoplasias Pulmonares , Pró-Fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Pró-Fármacos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Peróxido de Hidrogênio , Hipóxia , Autofagia , Dano ao DNA , DNA , Linhagem Celular Tumoral , Microambiente Tumoral
10.
J Ethnopharmacol ; 326: 117892, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38350505

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS) is a chronic vascular ailment characterized by inflammatory and lipid deposition in the arterial wall caused by endothelial injury. Ferroptosis is a novel type of cell death, and endothelial ferroptosis is a significant contributor to the progression of AS. Gualou-Xiebai (GLXB) is a renowned Chinese herb pair that serves a crucial function in treating AS. However, whether the underlying mechanism of GLXB plays a role in anti-atherosclerotic effects by inhibiting ferroptosis in endothelial cells has not been determined. AIM OF THE STUDY: To explore the influence of GLXB on endothelial ferroptosis and determine its underlying mechanism of action in AS. MATERIALS AND METHODS: In ApoE-/- mice, ultrasound was performed in mice fed a high-fat diet (HFD) for 12 weeks to assess the success of AS establishment. Then, ApoE-/- mice were treated with GLXB and Simvastatin (positive control) for 4 weeks. The effects of GLXB on AS pathology were assessed through aorta imaging and hematoxylin-eosin (HE) staining. To confirm the presence of ferroptosis, mitochondrial damage was observed using transmission electron microscope (TEM), along with analysis of free iron and lipid peroxidation levels. In vitro: ox-LDL-induced human vascular endothelial cells (HUVECs) injury and treated with GLXB, the ferroptosis inducer Erastin and an Nrf2 inhibitor ML385. Cell viability was evaluated using the CCK-8 assay in all groups. Flow cytometry was employed to detect lipid peroxidation and intracellular ferrous iron levels. Immunofluorescence staining microscopy verified Nrf2 nuclear translocation. Protein expression were measured by Western blot analysis. RESULTS: GLXB improved atherosclerotic aortic lesions and vascular plaques. GLXB inhibited endothelial injury in the aorta by decreasing the levels of inflammatory factors and adhesion factors, and by decreasing the shedding of endothelial cells. GLXB suppressed ferroptosis in ApoE-/- mice by attenuating mitochondrial damage in ECs, increasing the levels of glutathione (GSH) and superoxide dismutase (SOD) in aortic tissues and down-regulating the levels of levels of lipid peroxide (LPO) and malondialdehyde (MDA). Interestingly, Erastin was used to demonstrate in vitro that GLXB inhibition of ferroptosis attenuated ox-LDL-induced injuring effects on HUVECs that were reversed by Erastin. Mechanistically, GLXB activates the Nrf2 signaling pathway to inhibit ferroptosis by increasing downstream anti-ferroptosis target proteins and promoting the interaction between Nrf2 and SLC7A11. More convincingly, ML385 (Nrf2 inhibitor) reversed the anti-ferroptosis effect of GLXB. CONCLUSION: GLXB inhibits ferroptosis-mediated endothelial cell injury via activating the Nrf2 signaling pathway and further alleviates AS pathological damage.


Assuntos
Aterosclerose , Ferroptose , Lipoproteínas LDL , Humanos , Animais , Camundongos , Células Endoteliais , Fator 2 Relacionado a NF-E2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/metabolismo , Apolipoproteínas E/genética , Ferro/metabolismo
11.
J Agric Food Chem ; 72(8): 4127-4141, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38362879

RESUMO

An amyloid-ß (Aß) fibril is a vital pathogenic factor of Alzheimer's disease (AD). Aß fibril disintegrators possess great potential to be developed into novel anti-AD agents. Here, a ligand fishing method was employed to rapidly discover Aß42 fibril disintegrators from Ganoderma lucidum using Aß42 fibril-immobilized magnetic beads, which led to the isolation of six Aß42 fibril disintegrators including ganodermanontriol, ganoderic acid DM, ganoderiol F, ganoderol B, ganodermenonol, and ergosterol. Neuroprotective evaluation in vitro exhibited that these Aß42 fibril disintegrators could significantly mitigate Aß42-induced neurotoxicity. Among these six disintegrators, ergosterol and ganoderic acid DM with stronger protecting activity were further selected to evaluate their neuroprotective effect on AD in vivo. Results showed that ergosterol and ganoderic acid DM could significantly alleviate Aß42-induced cognitive dysfunction and hippocampus neuron loss in vivo. Moreover, ergosterol and ganoderic acid DM could significantly inhibit Aß42-induced neuron apoptosis and Nrf2-mediated neuron oxidative stress in vitro and in vivo.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Reishi , Triterpenos , Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Ligantes , Peptídeos beta-Amiloides , Amiloide , Ergosterol , Fragmentos de Peptídeos/uso terapêutico
12.
Alzheimers Res Ther ; 16(1): 15, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245771

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a degenerative neurological disorder. Recent studies have indicated that histone deacetylases (HDACs) are among the most prominent epigenetic therapy targets and that HDAC inhibitors have therapeutic effects on AD. Here, we identified sodium valproate (VPA), a pan-HDAC inhibitor, and WT161, a novel HDAC6 selective inhibitor, as potential therapeutic agents for AD. Underlying molecular mechanisms were investigated. METHODS: A cellular model, N2a-APPswe, was established via lentiviral infection, and the APPswe/PSEN1dE9 transgenic mouse model was employed in the study. LC-MS/MS was applied to quantify the concentration of WT161 in the mouse brain. Western blotting, immunohistochemical staining, thioflavin-S staining and ELISA were applied to detect protein expression in cells, tissues, or serum. RNA interference was utilized to knockdown the expression of specific genes in cells. The cognitive function of mice was assessed via the nest-building test, novel object recognition test and Morris water maze test. RESULTS: Previous studies have focused mainly on the impact of HDAC inhibitors on histone deacetylase activity. Our study discovered that VPA and WT161 can downregulate the expression of multiple HDACs, such as HDAC1 and HDAC6, in both AD cell and mouse models. Moreover, they also affect the expression of APP and APP secretases (BACE1, PSEN1, ADAM10). RNA interference and subsequent vitamin C induction further confirmed that the expression of APP and APP secretases is indeed regulated by HDAC1 and HDAC6, with the JNK pathway being the intermediate link in this regulatory process. Through the above pathways, VPA and WT161 effectively reduced Aß deposition in both AD cell and mouse models and significantly improved cognitive function in AD mice. CONCLUSIONS: In general, we have discovered that the HDAC6-JNK-APP secretases cascade is an important pathway for VPA and WT161 to exert their therapeutic effects on AD. Investigations into the safety and efficacy of VPA and WT161 were also conducted, providing essential preclinical evidence for assessing these two epigenetic drugs for the treatment of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Ácidos Hidroxâmicos , Compostos de Terfenil , Camundongos , Animais , Doença de Alzheimer/genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cromatografia Líquida , Ácido Aspártico Endopeptidases/metabolismo , Espectrometria de Massas em Tandem , Camundongos Transgênicos , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
13.
J Org Chem ; 89(3): 1633-1647, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38235569

RESUMO

A metal-free and atom-economic route for the synthesis of naphtho[1,2-b]furan-3-ones has been realized via p-TsOH·H2O-catalyzed intramolecular tandem double cyclization of γ-hydroxy acetylenic ketones with alkynes in formic acid. The benzene-linked furanonyl-ynes are the key intermediates obtained by the scission/recombination of C-O double bonds. Further, the structural modifications of the representative product were implemented by reduction, demethylation, substitution, and [5 + 2]-cycloaddition.

14.
J Transl Med ; 22(1): 98, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263117

RESUMO

BACKGROUND: Interindividual variation characterizes the relief experienced by constipation-predominant irritable bowel syndrome (IBS-C) patients following linaclotide treatment. Complex bidirectional interactions occur between the gut microbiota and various clinical drugs. To date, no established evidence has elucidated the interactions between the gut microbiota and linaclotide. We aimed to explore the impact of linaclotide on the gut microbiota and identify critical bacterial genera that might participate in linaclotide efficacy. METHODS: IBS-C patients were administered a daily linaclotide dose of 290 µg over six weeks, and their symptoms were then recorded during a four-week posttreatment observational period. Pre- and posttreatment fecal samples were collected for 16S rRNA sequencing to assess alterations in the gut microbiota composition. Additionally, targeted metabolomics analysis was performed for the measurement of short-chain fatty acid (SCFA) concentrations. RESULTS: Approximately 43.3% of patients met the FDA responder endpoint after taking linaclotide for 6 weeks, and 85% of patients reported some relief from abdominal pain and constipation. Linaclotide considerably modified the gut microbiome and SCFA metabolism. Notably, the higher efficacy of linaclotide was associated with enrichment of the Blautia genus, and the abundance of Blautia after linaclotide treatment was higher than that in healthy volunteers. Intriguingly, a positive correlation was found for the Blautia abundance and SCFA concentrations with improvements in clinical symptoms among IBS-C patients. CONCLUSION: The gut microbiota, especially the genus Blautia, may serve as a significant predictive microbe for symptom relief in IBS-C patients receiving linaclotide treatment. TRIAL REGISTRATION: This trial was registered with the Chinese Clinical Trial Registry (Chictr.org.cn, ChiCTR1900027934).


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Peptídeos , Humanos , Estudos Prospectivos , RNA Ribossômico 16S , Constipação Intestinal
15.
J Pharm Biomed Anal ; 241: 115981, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237543

RESUMO

Shenqi-Tiaoshen formula (SQTSF) is a traditional Chinese medicine (TCM) prescription that has been employed in the treatment of chronic obstructive pulmonary disease (COPD). Clinical practice has demonstrated that SQTSF is an effective prescription for stable COPD. However, owing to the complexity of TCM prescription, there is a lack of in-depth understanding of the chemical components of SQTSF and its in vivo metabolism studies. In this study, a comprehensive analytical strategy based on ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was established to identify the chemical components, the absorbed components, and the metabolites of SQTSF given by gavage in rats, and analyze their dynamic changes. As a result, 86 chemical components of SQTSF were characterized, which were mainly categorized into flavonoids, saponins, organic acids, terpenoids, etc. Among them, 13 compounds were confirmed unambiguously by reference standards. Furthermore, 20 prototype components and 46 metabolites were detected in rat plasma at different time points. It was found that one prototype component and thirteen metabolites could be detected during the entire 24 h, indicating that these compounds were slowly eliminated and thus accumulated in vivo over a prolonged duration. Interestingly, the phenomenon that three prototype components and fourteen metabolites reappeared after a period of disappearance from the plasma was found. It was also observed that different prototype components may generate the same metabolite. The metabolic processes of SQTSF in rats mainly included oxidation, reduction, hydration, demethylation, deglycosylation, methylation, acetylation, glucuronidation, glutathionylation, and associated combination reactions. Overall, the present study identified the chemical components of SQTSF and their dynamic metabolic profile in rat plasma, which provided a systematic and applicable strategy for screening and characterization of the prototype components and metabolites of TCM compound preparations.


Assuntos
Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Metaboloma , Medicamentos de Ervas Chinesas/química
16.
Curr Drug Deliv ; 21(5): 726-733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36658705

RESUMO

BACKGROUND: Borneol can enhance the blood-brain barrier (BBB) permeability of some drugs and suppress the efflux transport of P-glycoprotein (P-gp), which will contribute to the brain delivery of salvianic acid A (SAA). OBJECTIVE: The study aimed to develop an approach to improve the brain targeting delivery of SAA with the aid of borneol. MATERIALS AND METHODS: "Borneol" was involved in SAA via esterified prodrug SAA borneol ester (SBE) and combined administration (SAA-borneol, SAA-B). Subsequently, the blood-brain transport of SAA through brain/blood distribution and P-gp regulation via expression and function assay were investigated in rats. RESULTS: The SBE and SAA-B-treated group received a three-fold brain concentration and longer t1/2 and retention period of active SAA than that of SAA alone (20.18/13.82 min vs. 6.48 min; 18.30/17.42 min vs. 11.46 min). In addition, blood to brain transport of active SAA in SBE was altered in comparison to that of SAA-B, ultimately resulting in a better drug targeting index (9.93 vs. 3.63). Further studies revealed that SBE-induced downregulation of P-gp expression occurred at the later stage of administration (60 min, P < 0.01), but SBE always showed a more powerful drug transport activity across BBB represented by Kp value of rhodamine 123 than SAA-B (30, 60 min, P < 0.05). CONCLUSION: The comparative results indicate that SBE exhibits prominent efficiency on SAA's targeting delivery through improved blood/brain metabolic properties and sustained inhibitory effect of "borneol" on P-gp efflux. Therefore, prodrug modification can be applied as a more effective approach for brain delivery of SAA.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Pró-Fármacos , Ratos , Animais , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia , Pró-Fármacos/farmacologia
17.
J Pharm Biomed Anal ; 239: 115875, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061172

RESUMO

Huachansu (HCS) tablets, classified as well-known traditional Chinese medicine (TCM) preparation, have been proved to be effective in the treatment of hepatocellular carcinoma (HCC) in clinical studies. However, the underlying mechanism of HCS tablets against HCC has not been comprehensively elucidated. In this study, a rat model of HCC was established with diethylnitrosamine (DEN) inducer. The efficacy of HCS tablets against HCC was assessed through liver histopathological examination and evaluation of biochemical indicators. A metabolomics method based on UPLC-Q-TOF/MS combined with multivariate data analysis was established to identify differential metabolites related to the inhibition effect of HCS tablets on HCC, and then the relevant metabolic pathway analysis was performed to investigate the anti-HCC mechanisms of HCS tablets. The results showed that compared to the control group, the HCC model group showed a significant increase in the values of HCC-related biochemical indicators and the number of tumor nodules, indicating the successful establishment of the HCC rat model. Upon treatment with HCS tablets, the values of HCC-related biochemical indicators decreased, liver fibrosis and nuclear deformation were also significantly alleviated. A total of 15 differential metabolites associated with the anti-tumor effect of HCS tablets on HCC were screened and annotated through hepatic tissue metabolomics studies. Analysis of metabolic pathways revealed that the therapeutic effects of HCS tablets on HCC mainly involved the pentose and glucuronate interconversions and arachidonic acid metabolism. Further western blotting corroborated that the alteration in arachidonic acid (AA) level after the intervention of HCS tablets was related to the inhibition of cPLA2α expression in rat liver tissues. In conclusion, HCS tablets exhibit a certain anti-tumor effect on HCC, and the metabolomics method based on UPLC-Q-TOF/MS combined with further verification at the biochemical level is a promising way to reveal its underlying mechanism.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Ratos , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Cromatografia Líquida de Alta Pressão/métodos , Ácido Araquidônico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Metabolômica/métodos , Comprimidos , Biomarcadores/metabolismo
18.
BMC Microbiol ; 23(1): 373, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036954

RESUMO

Peutz-Jeghers Syndromeis a rare autosomal dominant genetic disease characterized by gastrointestinal hamartomatous polyps and skin and mucous membrane pigmentation. The pathogenesis of PJS remains unclear; however, it may be associated with mutations in the STK11 gene, and there is currently no effective treatment available. The gut microbiota plays an important role in maintaining intestinal homeostasis in the human body, and an increasing number of studies have reported a relationship between gut microbiota and human health and disease. However, relatively few studies have been conducted on the gut microbiota characteristics of patients with PJS. In this study, we analyzed the characteristics of the gut microbiota of 79 patients with PJS using 16 S sequencing and measured the levels of short-chain fatty acids in the intestines. The results showed dysbiosis in the gut microbiota of patients with PJS, and decreased synthesis of short-chain fatty acids. Bacteroides was positively correlated with maximum polyp length, while Agathobacter was negatively correlated with age of onset. In addition, acetic acid, propionic acid, and butyric acid were positively correlated with the age of onset but negatively correlated with the number of polyps. Furthermore, the butyric acid level was negatively correlated with the frequency of endoscopic surgeries. In contrast, we compared the gut microbiota of STK11-positive and STK11-negative patients with PJS for the first time, but 16 S sequencing analysis revealed no significant differences. Finally, we established a random forest prediction model based on the gut microbiota characteristics of patients to provide a basis for the targeted diagnosis and treatment of PJS in the future.


Assuntos
Microbioma Gastrointestinal , Síndrome de Peutz-Jeghers , Humanos , Síndrome de Peutz-Jeghers/genética , Síndrome de Peutz-Jeghers/patologia , Mutação em Linhagem Germinativa , Ácidos Graxos Voláteis , Butiratos
19.
Biomed Pharmacother ; 167: 115515, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742607

RESUMO

Glucagon-like peptide 1 receptor agonist exenatide (exendin-4) has potential protective capabilities against diabetic kidney disease (DKD). However, the underlying mechanism has not been fully elucidated. The expression of thioredoxin-interacting protein (Txnip) is upregulated during DKD progression by histone acetylation. Sirtuin 1 (SIRT1) is a deacetylase and is decreased in DKD, which indicates that it may regulate Txnip in this disease. Here, we used whole-body heterozygous Sirt1 knockout (Sirt1+/-) and kidney-specific Sirt1 knockout (KSK) mice to investigate whether SIRT1 regulates Txnip via histone deacetylation in DKD and exenatide-alleviated DKD. Exenatide substantially improved renal pathological damage, decreased the albumin-to-creatinine ratio (ACR), upregulated SIRT1 expression, and downregulated Txnip expression in kidneys of high-fat diet-treated C57BL/6J mice. However, these effects diminished in Sirt1+/- and KSK mice under exenatide treatment. The downregulation of Txnip expression by exendin-4 in high-glucose-treated SV40 MES13 cells was hampered during Sirt1 knockdown. These results demonstrate that kidney SIRT1 is indispensable in exenatide-improved DKD and downregulation of Txnip expression. Exendin-4 mechanistically downregulated Txnip histone 3 lysine 9 acetylation (H3K9ac) in a SIRT1-dependent manner and decreased spliced X-box binding protein 1 (XBP1s) recruitment to the Txnip promoter. These findings provide epigenetic evidence elucidating the specific mechanism for exenatide-mediated DKD alleviation and highlight the importance of Txnip as a promising therapeutic target for DKD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...