Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(14): 6504-6511, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37428105

RESUMO

Recently, soft actuators have been found to have great potential for various applications due to their ability to be mechanically reconfigured in response to external stimuli. However, the balance between output force and considerable strain constrains their potential for further application. In this work, a novel soft electrothermal actuator was fabricated by a polydimethylsiloxane (PDMS)-coated carbon nanotube sponge (CNTS). The results showed that CNTS was heated to 365 °C in ∼1 s when triggered by a voltage of 3.5 V. Consequently, due to the large amount of air inside, the actuator expanded in 2.9 s, lifting up to ∼50 times its weight, indicating an ultrafast response and powerful output force. In addition, even in water, the soft actuator showed quick response at a voltage of 6 V. This air-expand strategy and soft actuator design is believed to open a new horizon in the development of electronic textiles, smart soft robots, and so on.

2.
Nanomaterials (Basel) ; 12(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889680

RESUMO

Strain sensors are currently limited by an inability to operate over large deformations or to exhibit linear responses to strain. Producing strain sensors meeting these criteria remains a particularly difficult challenge. In this work, the fabrication of a highly flexible strain sensor based on electrospun thermoplastic polyurethane (TPU) fibrous tubes comprising wavy and oriented fibers coated with carboxylated multiwall carbon nanotubes (CNTs) is described. By combining spraying and ultrasonic-assisted deposition, the number of CNTs deposited on the electrospun TPU fibrous tube could reach 12 wt%, which can potentially lead to the formation of an excellent conductive network with high conductivity of 0.01 S/cm. The as-prepared strain sensors exhibited a wide strain sensing range of 0-760% and importantly high linearity over the whole sensing range while maintaining high sensitivity with a GF of 57. Moreover, the strain sensors were capable of detecting a low strain (2%) and achieved a fast response time whilst retaining a high level of durability. The TPU/CNTs fibrous tube-based strain sensors were found capable of accurately monitoring both large and small human body motions. Additionally, the strain sensors exhibited rapid response time, (e.g., 45 ms) combined with reliable long-term stability and durability when subjected to 60 min of water washing. The strain sensors developed in this research had the ability to detect large and subtle human motions, (e.g., bending of the finger, wrist, and knee, and swallowing). Consequently, this work provides an effective method for designing and manufacturing high-performance fiber-based wearable strain sensors, which offer wide strain sensing ranges and high linearity over broad working strain ranges.

3.
Polymers (Basel) ; 14(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893993

RESUMO

As wearable electronic devices have become commonplace in daily life, great advances in wearable strain sensors occurred in various fields including healthcare, robotics, virtual reality and other sectors. In this work, a highly stretchable and sensitive strain sensor based on electrospun styrene-ethylene-butene-styrene copolymer (SEBS) yarn modified by dopamine (DA) and coated with multi-walled carbon nanotubes (MWCNTs) was reported. Due to the process of twisting, a strain senor stretched to a strain of 1095.8% while exhibiting a tensile strength was 20.03 MPa. The strain sensor obtained a gauge factor (GF of 1.13 × 105) at a maximum strain of 215%. Concurrently, it also possessed good stability, repeatability and durability under different strain ranges, stretching speeds and 15,000 stretching-releasing cycles. Additionally, the strain sensor exhibited robust washing fastness under an ultrasonic time of 120 min at 240 W and 50 Hz. Furthermore, it had a superior sensing performance in monitoring joint motions of the human body. The high sensitivity and motion sensing performance presented here demonstrate that PDA@SEBS/MWNCTs yarn has great potential to be used as components of wearable devices.

4.
Recent Pat Nanotechnol ; 14(1): 5-9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31702523

RESUMO

Due to their unique properties, nanofibers have been widely used in various areas, for example, information industry, pharmaceutical application, environmental industry, textile and clothing, etc. Bubble electrospinning is one of the most important non-needle electrospinning methods for nanofiber fabrication. It usually uses polymer bubbles for the production of nanomaterials by using electrostatic force, flowing air or mechanical force to overcome the surface tension of bubbles. Bubble electrospinning mainly includes bubble electrospinning and blown bubble electrospinning. History of the development of bubble electrospinning is briefly introduced in this article, and the most promising patents on the technology are elucidated. The methods of bubble electrospinning are single bubble electrospinning, porous bubble electrospinning, blown bubble electrospinning, electrostatic-fieldassisted blown bubble spinning and others. These different bubble electrospinning methods are also discussed in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...