Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 127: 106017, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35841666

RESUMO

Indisulam (IDM) is a sulfanilamide anticancer agent and has been identified as a molecular glue recently. It shows potential for novel therapies development and brings more hope for curing human diseases. The affinity between molecular glues and plasma protein makes it significant to understand the characteristics of such substances. Therefore, the interaction between IDM and human serum albumin (HSA) was explored through solvent experiments, computer simulation experiments, enzyme kinetics experiments, and cell viability assay. The results revealed that IDM and HSA spontaneously formed stable binary complex with the binding constant of the order 105 M-1. IDM inserted in the site I of HSA, resulting the change in HSA secondary structure. And π electrons in IDM's benzene rings, as well as van der Waals forces and the H-bond, all helped to stabilize the HSA-IDM complex. The results of molecular dynamic simulation (MD) corresponded with the results from solvent experiment well. For instance, there were approximately 1-5 H-bonds between IDM and HSA. Lys199 and Arg218 were crucial energy contributors in the binding process. The esterase-like activity experiment confirmed that IDM inhibited the catalytic activity of HSA. In addition, cell experiment revealed that serum albumin can significantly reduce the cytotoxicity of IDM towards human embryonic kidney 293T (HEK293T) cells.


Assuntos
Simulação de Dinâmica Molecular , Albumina Sérica Humana , Sítios de Ligação , Dicroísmo Circular , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica Humana/química , Solventes , Espectrometria de Fluorescência , Sulfonamidas , Termodinâmica
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121335, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35526438

RESUMO

Phthalate esters (PAEs) are widely used as plasticizer components in production. Methyl hydrogen phthalate (MHP) is a metabolite of dimethyl phthalate (DMP, a kind of PAEs), and its toxic residues accumulate in the nature and can enter the human body. Here, the interaction between MHP and human serum albumin (HSA) was probed by using multi-spectral, computer simulations, and biochemical techniques. The results showed that MHP was spontaneously embedded in site I of HSA to form a complex by H-bonds and van der Waals forces (ΔH < 0, ΔS < 0). The binding constant (Ka) of the HSA-MHP system was 1.136 ± 0.026 × 104 M-1 (298 K). The combination of MHP produced conformational variations of HSA, as shown by the 3D fluorescence spectrum, CD spectra, and molecular dynamics simulation. Additionally, molecular docking indicated that MHP was surrounded by multiple residues, such as Lys199, Leu203, Phe206, and Trp214. Specifically, Lys199 and Trp214 exerted a crucial effect on the interaction of HSA and MHP. The residues with important energy contribution were mostly located in site I. The ASA values of the aromatic amino acids of HSA changed after combining with MHP. The Rg and SASA values of HSA increased after adding MHP, suggesting that the structure of HSA was less compact. Moreover, the esterase-like activity of HSA increased after adding MHP to HSA, indicating that MHP may disturb the normal physiological activities in the human body. This study was helpful to understand the biological function of MHP and provided some insights for its side effect in the human body.


Assuntos
Hidrogênio , Albumina Sérica Humana , Sítios de Ligação , Dicroísmo Circular , Ésteres , Humanos , Simulação de Acoplamento Molecular , Ácidos Ftálicos , Ligação Proteica , Albumina Sérica/química , Albumina Sérica Humana/química , Espectrometria de Fluorescência/métodos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...