Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Colloid Interface Sci ; 661: 772-780, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325175

RESUMO

Transition metal-based precatalysts are typically voltage-activated before electrochemical testing in the condition of alkaline oxygen evolution reaction. Nevertheless, the impact of voltage on the catalyst and the anion dissolution is frequently disregarded. In this study, Fe-doped NiMoO4 (Fe-NiMoO4) was synthesized as a precursor through a straightforward hydrothermal method, and MoFe-modified Ni (oxygen) hydroxide (MoFe-NiOxHy) was obtained via cyclic voltammetry (CV) activation. The effects of voltage on Fe-NiMoO4 and the dissolved inactive MoO42- ions in the process were examined in relation to OER performance. It has demonstrated that the crystallinity of the catalyst is reduced by voltage, thereby enhancing its electrocatalytic activity. The electron distribution state can be adjusted during the application of voltage, leading to the generation of additional active sites and an acceleration in the reaction rate. Additionally, MoO42- exhibits potential dependence during its dissolution. In the OER process, the dissolution of MoO42- enhances the reconstruction degree of Fe-NiMoO4 into the active substance and expedites the formation of active Ni(Fe)OOH. Hence, the optimized MoFe-NiOxHy exhibited exceptional electrocatalytic performance, with a current density of 100 mA cm-2 achieved at an overpotential of only 256 mV. This discovery contributes to a more comprehensive understanding of alkaline OER performance under the influence of applied voltage and the presence of inactive oxygen ions, offering a promising avenue for the development of efficient electrocatalysts.

3.
Mol Ther Oncolytics ; 28: 293-306, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36911068

RESUMO

Epithelial ovarian cancer (EOC) remains one of the leading causes of cancer-related deaths among women worldwide. Receptor tyrosine kinases (RTKs) have long been sought as therapeutic targets for EOC, as they are frequently hyperactivated in primary tumors and drive disease relapse, progression, and metastasis. More recently, these oncogenic drivers have been implicated in EOC response to poly(ADP-ribose) polymerase (PARP) inhibitors and epigenome-interfering agents. This evidence revives RTKs as promising targets for therapeutic intervention of EOC. This review summarizes recent studies on the role of RTKs in EOC malignancy and the use of their inhibitors for clinical treatment. Our focus is on the ERBB family, c-Met, and VEGFR, as they are linked to drug resistance and targetable using commercially available drugs. The importance of these RTKs and their inhibitors is highlighted by their impact on signal transduction and intratumoral heterogeneity in EOC and successful use as maintenance therapy in the clinic through suppression of the VEGF/VEGFR axis. Finally, the therapeutic potential of RTK inhibitors is discussed in the context of combinatorial targeting via co-inhibiting proliferative and anti-apoptotic pathways, epigenomic/transcriptional programs, and harnessing the efficacy of PARP inhibitors and programmed cell death 1/ligand 1 immune checkpoint therapies.

4.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36413416

RESUMO

Chronic inflammation is associated with lung tumorigenesis, in which NF-κB-mediated epigenetic regulation plays a critical role. Lung tumor suppressor G protein-coupled receptor, family C, member 5A (GPRC5A), is repressed in most non-small cell lung cancer (NSCLC); however, the mechanisms remain unclear. Here, we show that NF-κB acts as a transcriptional repressor in suppression of GPRC5A. NF-κB induced GPRC5A repression both in vitro and in vivo. Intriguingly, transactivation of NF-κB downstream targets was not required, but the transactivation domain of RelA/p65 was required for GPRC5A repression. NF-κB did not bind to any potential cis-element in the GPRC5A promoter. Instead, p65 was complexed with retinoic acid receptor α/ß (RARα/ß) and recruited to the RA response element site at the GPRC5A promoter, resulting in disrupted RNA polymerase II complexing and suppressed transcription. Notably, phosphorylation on serine 276 of p65 was required for interaction with RARα/ß and repression of GPRC5A. Moreover, NF-κB-mediated epigenetic repression was through suppression of acetylated histone H3K9 (H3K9ac), but not DNA methylation of the CpG islands, at the GPRC5A promoter. Consistently, a histone deacetylase inhibitor, but not DNA methylation inhibitor, restored GPRC5A expression in NSCLC cells. Thus, NF-κB induces transcriptional repression of GPRC5A via a complex with RARα/ß and mediates epigenetic repression via suppression of H3K9ac.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , NF-kappa B/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Ativação Transcricional , Epigênese Genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Células Epiteliais/metabolismo
5.
Cancer Res ; 82(6): 1025-1037, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35045987

RESUMO

While initiation is established as a critical step in tumorigenesis, the identity of the cell of origin for lung adenocarcinoma and the mechanism controlling susceptibility to initiation remain elusive. Here we show that lung tumor suppressor Gprc5a-knockout (KO) mice are susceptible to initiation of lung tumorigenesis. Bronchioalveolar stem cells (BASC) and alveolar type 2 (AT2) cells were aberrantly expanded in Gprc5a-KO mouse lungs compared with those in wild-type (WT) mice, suggesting that Gprc5a-KO might confer susceptibility to initiation by increasing the cell of origin in mouse lungs. BASCs from Gprc5a-KO mice (KO-BASC) exhibited significantly increased stemness and self-renewal potential and reduced differentiation capacity compared with BASCs from WT mice (WT-BASC). AT2 cells did not possess self-renewal potential regardless of Gprc5a status. KO-BASCs expressed a stem-like gene profile with upregulated Abcg2, EGFR, and NF-κB signaling compared with WT-BASCs. Blockade of EGFR and NF-κB signaling inhibited both expansion of BASC and AT2 cells and lung tumorigenesis. Abcg2 was expressed in active KO-BASCs as well as in lung tumor cells but not in quiescent WT-BASCs or AT2 cells, supporting that lung adenocarcinoma cells are derived from Abcg2-positive KO-BASCs (active). Taken together, Gprc5a deletion leads to expansion of active BASCs via dysregulated EGFR and NF-κB signaling that confers susceptibility to initiation of lung tumorigenesis, marking Abcg2-positive BASCs as candidate cell of origin for lung adenocarcinoma. SIGNIFICANCE: Identification of active bronchioalveolar stem cells as lung adenocarcinoma cells of origin provides insights into mechanisms of lung tumorigenesis and could facilitate development of effective strategies for cancer prevention and therapy. See related commentary by Osborne and Minna, p. 972.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Células-Tronco , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Animais , Carcinogênese , Transformação Celular Neoplásica , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Org Biomol Chem ; 19(39): 8487-8491, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34545904

RESUMO

An efficient and practical approach for the synthesis of medicinally important acridones was developed from anthranils and commercially available arylboronic acids by a tandem copper(I)-catalyzed electrophilic amination/Ag(I)-mediated oxidative annulation strategy. This new and straightforward protocol displayed a broad substrate scope (25 examples) and high functional group tolerance. What's more, a possible mechanistic proposal was also presented.


Assuntos
Cobre
8.
Cancers (Basel) ; 13(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919420

RESUMO

As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), and the Wnt/ß-catenin pathway, as well as the dynamics of exosome and cellular metabolism. Finally, we discuss the implications of the highly plastic nature and epigenetic susceptibility of CD151 expression, function, and signaling for clinical diagnosis and therapeutic intervention for human cancer.

9.
Food Chem ; 354: 129511, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33735695

RESUMO

Based on the successful synthesis of mercaptomethamidophos as a substrate, a novel nanogold/mercaptomethamidophos multi-residue electrochemical biosensor was designed and fabricated by combining nanoscale effect, strong Au-S bonds as well as interaction between acetylcholinesterase (AChE) and mercaptomethamidophos, which can simultaneously detect 11 kinds of organophosphorus pesticides (OPPs) and total amount of OPPs using indirect competitive method. Electrochemical behavior of the modified electrode was characterized by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The AChE concentration and incubation time were optimized at 37.4 °C to achieve the best detection effect. This biosensor exhibits excellent electrochemical properties with a wider linear range of 0.1 ~ 1500 ng·mL-1, lower detection limit of 0.019 ~ 0.077 ng·mL-1, better stability and repeatability, which realizes the rapid detection of total amount of OPPs, and can simultaneously detect a large class of OPPs rather than one kind of OPP. Two OPPs (trichlorfon, dichlorvos) were detected in actual samples of apple and cabbage and achieved satisfactory test results.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Compostos Organofosforados/química , Compostos Organotiofosforados/química , Praguicidas/análise , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Brassica/química , Brassica/metabolismo , Espectroscopia Dielétrica , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Ouro/química , Limite de Detecção
11.
Cancer Res ; 81(3): 552-566, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33229341

RESUMO

Cancer cells need to generate large amounts of glutathione (GSH) to buffer oxidative stress during tumor development. A rate-limiting step for GSH biosynthesis is cystine uptake via a cystine/glutamate antiporter Xc-. Xc- is a sodium-independent antiporter passively driven by concentration gradients from extracellular cystine and intracellular glutamate across the cell membrane. Increased uptake of cystine via Xc- in cancer cells increases the level of extracellular glutamate, which would subsequently restrain cystine uptake via Xc-. Cancer cells must therefore evolve a mechanism to overcome this negative feedback regulation. In this study, we report that glutamate transporters, in particular SLC1A1, are tightly intertwined with cystine uptake and GSH biosynthesis in lung cancer cells. Dysregulated SLC1A1, a sodium-dependent glutamate carrier, actively recycled extracellular glutamate into cells, which enhanced the efficiency of cystine uptake via Xc- and GSH biosynthesis as measured by stable isotope-assisted metabolomics. Conversely, depletion of glutamate transporter SLC1A1 increased extracellular glutamate, which inhibited cystine uptake, blocked GSH synthesis, and induced oxidative stress-mediated cell death or growth inhibition. Moreover, glutamate transporters were frequently upregulated in tissue samples of patients with non-small cell lung cancer. Taken together, active uptake of glutamate via SLC1A1 propels cystine uptake via Xc- for GSH biosynthesis in lung tumorigenesis. SIGNIFICANCE: Cellular GSH in cancer cells is not only determined by upregulated Xc- but also by dysregulated glutamate transporters, which provide additional targets for therapeutic intervention.


Assuntos
Cistina/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Glutationa/biossíntese , Neoplasias Pulmonares/metabolismo , Animais , Antiporters/metabolismo , Morte Celular , Linhagem Celular Tumoral , Glutamina/deficiência , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Estresse Oxidativo , Receptores Acoplados a Proteínas G , Estresse Fisiológico , Regulação para Cima
12.
Cell Oncol (Dordr) ; 43(6): 1049-1066, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33006750

RESUMO

PURPOSE: Stemming from a myriad of genetic and epigenetic alterations, triple-negative breast cancer (TNBC) is tied to poor clinical outcomes and aspires for individualized therapies. Here we investigated the therapeutic potential of co-inhibiting integrin-dependent signaling pathway and BRD4, a transcriptional and epigenetic mediator, for TNBC. METHODS: Two independent patient cohorts were subjected to bioinformatic and IHC examination for clinical association of candidate cancer drivers. The efficacy and biological bases for co-targeting these drivers were interrogated using cancer cell lines, a protein kinase array, chemical inhibitors, RNAi/CRISPR/Cas9 approaches, and a 4 T1-Balb/c xenograft model. RESULTS: We found that amplification of the chromosome 8q24 region occurred in nearly 20% of TNBC tumors, and that it coincided with co-upregulation or amplification of c-Myc and FAK, a key effector of integrin-dependent signaling. This co-upregulation at the mRNA or protein level correlated with a poor patient survival (p < 0.0109 or p < 0.0402, respectively). Furthermore, we found that 14 TNBC cell lines exhibited high vulnerabilities to the combination of JQ1 and VS-6063, potent pharmacological antagonists of the BRD4/c-Myc and integrin/FAK-dependent pathways, respectively. We also observed a cooperative inhibitory effect of JQ1 and VS-6063 on tumor growth and infiltration of Ly6G+ myeloid-derived suppressor cells in vivo. Finally, we found that JQ1 and VS-6063 cooperatively induced apoptotic cell death by altering XIAP, Bcl2/Bcl-xl and Bim levels, impairing c-Src/p130Cas-, PI3K/Akt- and RelA-associated signaling, and were linked to EMT-inducing transcription factor Snail- and Slug-dependent regulation. CONCLUSION: Based on our results, we conclude that the BRD4/c-Myc- and integrin/FAK-dependent pathways act in concert to promote breast cancer cell survival and poor clinical outcomes. As such, they represent promising targets for a synthetic lethal-type of therapy against TNBC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Integrinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Azepinas/farmacologia , Proteína 11 Semelhante a Bcl-2/metabolismo , Benzamidas/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
13.
J Med Chem ; 63(19): 11286-11301, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32844651

RESUMO

Blockade of immune checkpoint PD-1/PD-L1 facilitates the rescue of immune escapes of tumor cells. Though various monoclonal antibodies have been approved for clinical therapy, the development of small molecular inhibitors lags behind antibodies partially owing to the challenges of protein-protein interaction (PPI) blocker design. In this work, we adopted the skeleton of natural cyclopeptidic antibiotics gramicidin S as the start point for PD-1/PD-L1 inhibitor exploring and discovered a series of novel cyclopeptides that could interfere with the PPI of PD-1/PD-L1 based on several rounds of structural design and optimization. The representative active cyclopeptide 66 can bind two PD-L1 and efficiently block the PD-1/PD-L1 interaction, recruit the immune cells to the tumor cells, enhance their killing against tumor cells by promoting the release of granzyme B and perforin, and display significant CD8+ T cell-dependent tumor suppression activity in vivo.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Desenho de Fármacos , Imunoterapia , Neoplasias/tratamento farmacológico , Peptídeos Cíclicos/química , Humanos
14.
Am J Transl Res ; 12(4): 1428-1442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32355552

RESUMO

Owing to the complexity of interacting molecular networks on the cell surface, integrin-associated tetraspanin CD151 remains controversial regarding its clinical importance and functional impact in prostate cancer. The current study evaluated dynamics and clinical importance of CD151 expression and its function in prostate cancer by IHC analysis of two independent patient cohorts (n=80, 181), bioinformatic interrogation of the TCGA database, and evaluation of gene knockdown effect at the cellular level. Our data showed that aside from high mRNA expression, CD151 was primarily localized to intercellular junctions at the plasma membrane in normal prostate glands or benign tissues, regardless of nature of antibodies used. By contrast, in primary tumors from patients with metastatic disease, CD151 was largely localized in the cytosol. Furthermore, the level of the cell-cell junction-linked CD151 was inversely associated with Gleason grade and tumor stage (P<0.001 for both). The portion of primary tumors expressing junctional CD151 was also three-fold less in the metastatic patient population than its counterpart (P<0.001). In line with these observations, CD151 and its associated α3ß1 or α6ß4 integrin inversely correlated with androgen receptor (AR) at the mRNA level (Spearman coefficient: -0.44, -0.48 and -0.42) in the TCGA cohort. Expression of these adhesion molecules also correlated with DNA methylation in their promoters (Spearman coefficient: -0.37, -0.71 and -0.82). Combined, these data suggest that CD151 and associated integrins are linked to tumor metastasis through AR and the epigenetic program. Meanwhile, CD151 knockdown in E-cadherin-positive tumor cells led to increased cell proliferation and induction of the epithelial-mesenchymal transition (EMT)-like phenotype. Given the strong RGD-binding integrin dependence of EMT-featured tumor cells, we examined focal adhesion kinase (FAK), their key signaling effector, in the above patient cohorts. In contrast to CD151, FAK exhibited positive correlation with tumor grade and stage as well as AR and p53 inactivation at either mRNA, protein or genomic level. Taken together, our results suggest that CD151 represses prostate cancer by antagonizing cell proliferation, EMT and the signaling of RGD-binding integrins. Since this anti-tumorigenic role is prone to the AR-mediated transcriptional and epigenetic regulation, CD151 and possibly α3ß1 and α6ß4 integrins are of potential biomarkers for metastatic prostate cancer.

15.
Nat Rev Mol Cell Biol ; 21(6): 341-352, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32300252

RESUMO

Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.


Assuntos
Pesquisa Biomédica/normas , Transição Epitelial-Mesenquimal , Animais , Movimento Celular , Plasticidade Celular , Consenso , Biologia do Desenvolvimento/normas , Humanos , Neoplasias/patologia , Terminologia como Assunto
16.
Genes Dis ; 7(2): 172-184, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32215287

RESUMO

Epithelial-mesenchymal Transition (EMT) is a de-differentiation program that imparts tumor cells with the phenotypic and cellular plasticity required for drug resistance, metastasis, and recurrence. This dynamic and reversible events is governed by a network of EMT-transcription factors (EMT-TFs) through epigenetic regulation. Many chromatin modifying-enzymes utilize metabolic intermediates as cofactors or substrates; this suggests that EMT is subjected to the metabolic regulation. Conversely, EMT rewires metabolic program to accommodate cellular changes during EMT. Here we summarize the latest findings regarding the epigenetic regulation of EMT, and discuss the mutual interactions among metabolism, epigenetic regulation, and EMT. Finally, we provide perspectives of how this interplay contributes to cellular plasticity, which may result in the clinical manifestation of tumor heterogeneity.

17.
Oncogene ; 39(15): 3179-3194, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32060421

RESUMO

Chronic inflammation has been linked to promotion of tumorigenesis and metastasis in lung. However, due to lack of a relevant animal model for characterization, the underlying mechanism remains elusive. Lung tumor suppressor gene Gprc5a-knockout (ko) mice are susceptible to lung inflammation, tumorigenesis and metastasis, which resembles the pathological features in human patients. Here, we showed that PTGES/PGE2 signaling was highly associated with lung tumorigenesis and metastasis in Gprc5a-ko mice. Interestingly, Ptges-knockout in mouse lung tumor cells, although reduced their stemness and EMT-like features, still formed tumors and lung metastasis in immune-deficient nude mice, but not in immune-competent mice. This suggests that the major role of PTGES/PGE2 signaling in tumorigenicity and lung metastasis is through immunosuppression. Mechanistically, PTGES/PGE2 signaling intrinsically endows tumor cells resistant to T-cell cytotoxicity, and induces cytokines extrinsically for MDSC recruitment, which is crucial for suppression of T-cell immunity. Importantly, targeting PGE2 signaling in Gprc5a-ko mice by PTGES inhibitor suppressed MDSC recruitment, restored T cells, and significantly repressed lung metastasis. Thus, PTGES/PGE2 signaling links immunosuppression and metastasis in an inflammatory lung microenvironment of Gprc5a-ko mouse model.


Assuntos
Dinoprostona/metabolismo , Neoplasias Pulmonares/imunologia , Prostaglandina-E Sintases/metabolismo , Receptores Acoplados a Proteínas G/genética , Evasão Tumoral/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , 4-Butirolactona/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Camundongos Nus , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/patologia , Cultura Primária de Células , Prostaglandina-E Sintases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
18.
Chem Commun (Camb) ; 56(19): 2881-2884, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32037404

RESUMO

The first proteolysis targeting chimeras for the intracellular elimination of transforming growth factor-ß1 (TGF-ß1), which contributes to various diseases, are described. The appropriately designed DT-6 could efficiently degrade intracellular TGF-ß1, and inhibit M2 macrophage induced epithelial to mesenchymal transition and invasive migration of cancer cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Transição Epitelial-Mesenquimal , Células Hep G2 , Humanos , Invasividade Neoplásica
19.
Proc Natl Acad Sci U S A ; 117(7): 3748-3758, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015106

RESUMO

Increased expression of extracellular matrix (ECM) proteins in circulating tumor cells (CTCs) suggests potential function of cancer cell-produced ECM in initiation of cancer cell colonization. Here, we showed that collagen and heat shock protein 47 (Hsp47), a chaperone facilitating collagen secretion and deposition, were highly expressed during the epithelial-mesenchymal transition (EMT) and in CTCs. Hsp47 expression induced mesenchymal phenotypes in mammary epithelial cells (MECs), enhanced platelet recruitment, and promoted lung retention and colonization of cancer cells. Platelet depletion in vivo abolished Hsp47-induced cancer cell retention in the lung, suggesting that Hsp47 promotes cancer cell colonization by enhancing cancer cell-platelet interaction. Using rescue experiments and functional blocking antibodies, we identified type I collagen as the key mediator of Hsp47-induced cancer cell-platelet interaction. We also found that Hsp47-dependent collagen deposition and platelet recruitment facilitated cancer cell clustering and extravasation in vitro. By analyzing DNA/RNA sequencing data generated from human breast cancer tissues, we showed that gene amplification and increased expression of Hsp47 were associated with cancer metastasis. These results suggest that targeting the Hsp47/collagen axis is a promising strategy to block cancer cell-platelet interaction and cancer colonization in secondary organs.


Assuntos
Plaquetas/metabolismo , Neoplasias da Mama/metabolismo , Colágeno/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Células Neoplásicas Circulantes/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Transição Epitelial-Mesenquimal , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Amplificação de Genes , Proteínas de Choque Térmico HSP47/genética , Humanos , Camundongos SCID , Metástase Neoplásica
20.
Cancer Res ; 80(4): 784-797, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31848193

RESUMO

Cancer cells that succeed in forming metastasis need to be reprogrammed to evade immune surveillance and survive in a new microenvironment. This is facilitated by metastatic niches that are either postformed through reciprocal signaling between tumor cells and local stromal cells or preformed as premetastatic niches before tumor cell arrival. IL6/STAT3 signaling is aberrantly activated in lung tumorigenesis and metastasis, however, the roles and mechanisms of action of IL6 remain controversial. Here, we showed that blockade of intrinsic STAT3 signaling in lung tumor cells suppressed lung metastasis in immune-competent syngeneic mice, but not in immune-deficient nude mice. Consistently, repression of STAT3 signaling in tumor cells made them susceptible to T-cell-mediated cytotoxicity. Thus, STAT3-mediated immunosuppression is crucial for metastasis. Noticeably, lung metastasis was greatly increased in Gprc5a-knockout (ko; 5a -/-) mice compared with wild-type mice, which correlated with upregulated IL6 in the tumor microenvironment. Depletion of IL6 via combined deletion of Il6 and Gprc5a genes almost completely eliminated lung metastasis in Gprc5a-ko/Il6-ko (5a -/-;Il6 -/-) mice. Mechanistically, dysregulated IL6 reprogrammed the STAT3 pathway in metastatic tumor cells, and induced recruitment of myeloid-derived suppressor cells and polarized macrophages to evade host immunity. Consistently, IHC staining showed that activated STAT3 correlated with repressed infiltration of CD8+ T cells in non-small cell lung cancer. Therefore, IL6/STAT3 signaling is crucial for orchestrating premetastatic niche formation and immunosuppression in lung.Significance: IL6 plays important roles not only in cell autonomous propensity for metastasis, but also in establishing the metastatic niche.


Assuntos
Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinogênese/imunologia , Carcinogênese/patologia , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Células não Pequenas/secundário , Linhagem Celular Tumoral , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Camundongos Nus , Células Supressoras Mieloides/imunologia , Cultura Primária de Células , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fator de Transcrição STAT3/imunologia , Evasão Tumoral/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...