Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(2)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36215973

RESUMO

Electron transport layers (ETLs) are important components of high-performance all-inorganic perovskite nanocrystals light-emitting diodes (PNCs-LED). Herein, atomic layer deposition (ALD) of inorganic ZnO layer is combined to the organic 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) to form dual ETLs to enhance both the efficiency and stability of PNCs-LED simultaneously. Optimization of ZnO thickness suggested that 10 cycles ALD yields the best performance of the devices. The external quantum efficiency of the device reaches to 7.21% with a low turn-on voltage (2.4 V). Impressively, the dual ETL PNCs-LED realizes maximumT50lifetime of 761 h at the initial luminance of 100 nit, which is one of the top lifetimes among PNCs-LEDs up to now. The improved performance of dual ETL PNCs-LED is mainly due to the improved charge transport balance with favorable energy level matching. These findings present a promising strategy to modify the function layer via ALD to achieve both highly efficient and stable PNCs-LED.

2.
J Phys Chem Lett ; 12(12): 3038-3045, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735572

RESUMO

Black phase CsPbI3 perovskites have emerged as one of the most promising materials for use in optoelectronic devices due to their remarkable properties. However, black phase CsPbI3 usually possesses poor stability and involves a phase change process, resulting in an undesired orthorhombic (δ) yellow phase. Here, the enhanced stability of CsPbI3 nanocrystals is achieved by incorporating the Cu2+ ion into the CsPbI3 lattice under mild conditions. In particular, the Cu2+-doped CsPbI3 film can maintain red luminescence for 35 days in air while the undoped ones transformed into the nonluminescent yellow phase in several days. Furthermore, first-principles calculations verified that the enhanced stability is ascribed to the increased formation energy due to the successful doping of Cu2+ in CsPbI3. Benefiting from such an effective doping strategy, the as-prepared Cu2+-doped CsPbI3 as an emitting layer shows much better performance compared with that of the undoped counterpart. The turn-on voltage of the Cu2+-doped quantum-dot light-emitting diode (QLED) (1.6 V) is significantly reduced compared with that of the pristine QLED (3.8 V). In addition, the luminance of the Cu2+-doped QLED can reach 1270 cd/m2, which is more than twice that of the pristine CsPbI3 QLED (542 cd/m2). The device performance is believed to be further improved by optimizing the purification process and device structure, shedding light on future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...