Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575594

RESUMO

This paper investigates the problem of using an unmanned aerial vehicle (UAV) to track and hover above an uncooperative target, such as an unvisited area or an object that is newly discovered. A vision-based strategy integrating the metrology and the control is employed to achieve target tracking and hovering observation. First, by introducing a virtual camera frame, the reprojected image features can change independently of the rotational motion of the vehicle. The image centroid and an optimal observation area on the virtual image plane are exploited to regulate the relative horizontal and vertical distance. Then, the optic flow and gyro measurements are utilized to estimate the relative UAV-to-target velocity. Further, a gain-switching proportional-derivative (PD) control scheme is proposed to compensate for the external interference and model uncertainties. The closed-loop system is proven to be exponentially stable, based on the Lyapunov method. Finally, simulation results are presented to demonstrate the effectiveness of the proposed vision-based strategy in both hovering and tracking scenarios.

2.
Harmful Algae ; 94: 101807, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32414503

RESUMO

The frequency of toxin-producing cyanobacterial blooms has increased in recent decades due to nutrient enrichment and climate change. Because Microcystis blooms are related to different environmental conditions, identifying potential nutrient control targets can facilitate water quality managers to reduce the likelihood of microcystins (MCs) risk. However, complex biotic interactions and field data limitations have constrained our understanding of the nutrient-microcystin relationship. This study develops a Bayesian modelling framework with intracellular and extracellular MCs that characterize the relationships between different environmental and biological factors. This model was fit to the across-lake dataset including three bloom-plagued lakes in China and estimated the putative thresholds of total nitrogen (TN) and total phosphorus (TP). The lake-specific nutrient thresholds were estimated using Bayesian updating process. Our results suggested dual N and P reduction in controlling cyanotoxin risks. The total Microcystis biomass can be substantially suppressed by achieving the putative thresholds of TP (0.10 mg/L) in Lakes Taihu and Chaohu, but a stricter TP target (0.05 mg/L) in Dianchi Lake. To maintain MCs concentrations below 1.0 µg/L, the estimated TN threshold in three lakes was 1.8 mg/L, but the effect can be counteracted by the increase of temperature. Overall, the present approach provides an efficient way to integrate empirical knowledge into the data-driven model and is helpful for the management of water resources.


Assuntos
Microcystis , Teorema de Bayes , China , Aprendizado de Máquina , Microcistinas , Nutrientes
3.
J Environ Manage ; 246: 687-694, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31220729

RESUMO

The seasonal succession of phytoplankton assemblages is important to ascertain the dynamics of an aquatic ecosystem structure, whereas its occurrence in response to hydrodynamic alterations is not clearly understood. In view of the characteristics of annual water level variation formed by the Three Gorges Dam Project (TGDP), our understanding about how these changes affect phytoplankton structure and dynamics is still very limited due to the shortage of long-term observation data. In this study, we used Huan Jing 1 charge-coupled device images over the past decade to examine the phytoplankton succession dates between cyanobacterial and green algal blooms in the backwater area of the Three Gorges Reservoir (TGR). The results indicated continuous wavelet transform-based peak analysis is an efficiency tool that can illustrate the temporal pattern of phytoplankton succession using satellite-derived chlorophyll ɑ and Cyano-Chlorophyta index thresholds. Water level, air temperature, pH and total nitrogen/total phosphorus ratio were four important factors affecting the decline and rise phase of cyanobacterial blooms in the TGR from 2008 to 2018. Given that the upstream dam operation is likely to alter ecological and environmental conditions in the backwater area, this mechanism, so-called "water-level linkage", could alleviate the persistent period of cyanobacterial and green algal blooms. Remote sensing together with time series analysis provided a useful method to examine the seasonal succession of phytoplankton assemblages in the TGR, and these findings provided strategic insight for the water-quality management in the post-TGDP period.


Assuntos
Ecossistema , Fitoplâncton , China , Monitoramento Ambiental , Eutrofização , Estações do Ano
4.
Harmful Algae ; 83: 14-24, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31097252

RESUMO

Microcystis spp., which occur as colonies of different sizes under natural conditions, have expanded in temperate and tropical freshwater ecosystems and caused seriously environmental and ecological problems. In the current study, a Bayesian network (BN) framework was developed to access the probability of microcystins (MCs) risk in large shallow eutrophic lakes in China, namely, Taihu Lake, Chaohu Lake, and Dianchi Lake. By means of a knowledge-supported way, physicochemical factors, Microcystis morphospecies, and MCs were integrated into different network structures. The sensitive analysis illustrated that Microcystis aeruginosa biomass was overall the best predictor of MCs risk, and its high biomass relied on the combined condition that water temperature exceeded 24 °C and total phosphorus was above 0.2 mg/L. Simulated scenarios suggested that the probability of hazardous MCs (≥1.0 µg/L) was higher under interactive effect of temperature increase and nutrients (nitrogen and phosphorus) imbalance than that of warming alone. Likewise, data-driven model development using a naïve Bayes classifier and equal frequency discretization resulted in a substantial technical performance (CCI = 0.83, K = 0.60), but the performance significantly decreased when model excluded species-specific biomasses from input variables (CCI = 0.76, K = 0.40). The BN framework provided a useful screening tool to evaluate cyanotoxin in three studied lakes in China, and it can also be used in other lakes suffering from cyanobacterial blooms dominated by Microcystis.


Assuntos
Microcystis , Teorema de Bayes , China , Ecossistema , Lagos , Microcistinas , Medição de Risco
5.
Sci Bull (Beijing) ; 64(20): 1540-1556, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659563

RESUMO

Timely monitoring, detection and quantification of cyanobacterial blooms are especially important for controlling public health risks and understanding aquatic ecosystem dynamics. Due to the advantages of simultaneous data acquisition over large geographical areas and high temporal coverage, remote sensing strongly facilitates cyanobacterial bloom monitoring in inland waters. We provide a comprehensive review regarding cyanobacterial bloom remote sensing in inland waters including cyanobacterial optical characteristics, operational remote sensing algorithms of chlorophyll, phycocyanin and cyanobacterial bloom areas, and satellite imaging applications. We conclude that there have many significant progresses in the remote sensing algorithm of cyanobacterial pigments over the past 30 years. The band ratio algorithms in the red and near-infrared (NIR) spectral regions have great potential for the remote estimation of chlorophyll a in eutrophic and hypereutrophic inland waters, and the floating algae index (FAI) is the most widely used spectral index for detecting dense cyanobacterial blooms. Landsat, MODIS (Moderate Resolution Imaging Spectroradiometer) and MERIS (MEdium Resolution Imaging Spectrometer) are the most widely used products for monitoring the spatial and temporal dynamics of cyanobacteria in inland waters due to the appropriate temporal, spatial and spectral resolutions. Future work should primarily focus on the development of universal algorithms, remote retrievals of cyanobacterial blooms in oligotrophic waters, and the algorithm applicability to mapping phycocyanin at a large spatial-temporal scale. The applications of satellite images will greatly improve our understanding of the driving mechanism of cyanobacterial blooms by combining numerical and ecosystem dynamics models.

6.
Sensors (Basel) ; 18(8)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104540

RESUMO

Under dynamic conditions, motion blur is introduced to star images obtained by a star sensor. Motion blur affects the accuracy of the star centroid extraction and the identification of stars, further reducing the performance of the star sensor. In this paper, a star image restoration algorithm is investigated to reduce the effect of motion blur on the star image. The algorithm includes a blur kernel calculation aided by a MEMS gyroscope, blur kernel correction based on the structure of the star strip, and a star image reconstruction method based on scaled gradient projection (SGP). Firstly, the motion trajectory of the star spot is deduced, aided by a MEMS gyroscope. Moreover, the initial blur kernel is calculated by using the motion trajectory. Then, the structure information star strip is extracted by Delaunay triangulation. Based on the structure information, a blur kernel correction method is presented by utilizing the preconditioned conjugate gradient interior point algorithm to reduce the influence of bias and installation deviation of the gyroscope on the blur kernel. Furthermore, a speed-up image reconstruction method based on SGP is presented for time-saving. Simulated experiment results demonstrate that both the blur kernel determination and star image reconstruction methods are effective. A real star image experiment shows that the accuracy of the star centroid extraction and the number of identified stars increase after restoration by the proposed algorithm.

7.
Sci Total Environ ; 628-629: 848-857, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29455135

RESUMO

Harmful algal blooms are now widely recognised as a severe threat to freshwater ecosystems, particularly in semi-fluvial environments created by river damming. Given the high spatial and temporal variability of cyanobacterial blooms, remote sensing is more suitable than conventional field surveys in monitoring blooms. However, the majority of existing algorithms cannot distinguish cyanobacterial blooms from eukaryotic algal blooms by extracting spectral features in the remote-sensing reflectance (Rrs). In this study, in situ Rrs spectra of cyanobacterial and green algal blooms in Lakes Gaoyang, Hanfeng and Changshou of the Three Gorges Reservoir (TGR) in China were recorded. Characteristic spectral indices, namely, the normalised difference peak-valley index and Cyano-Chlorophyta index, were used to develop an algorithm that can effectively distinguish cyanobacterial and green algal blooms. The proposed algorithm was also used to investigate the spatio-temporal dynamics of the two phenotypes of blooms derived from Huan Jing 1 charge-coupled device images. The resulting accuracy of 93.5% demonstrated that remote sensing technology, in conjunction with field observation, could efficiently differentiate bloom-forming species and assess the water quality in the TGR.

8.
Environ Sci Pollut Res Int ; 24(23): 19044-19056, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28660506

RESUMO

Harmful cyanobacterial blooms are exemplified as a major environmental concern due to producing toxin, and have generated a serious threat to public health. Knowledge on the spatial-temporal distribution of cyanobacterial blooms is therefore crucial for public health organizations and environmental agencies. In this study, field data and charge coupled device (CCD) image were collected in Lakes Gaoyang and Hanfeng of the Three Gorges Reservoir (TGR), China. We conducted the risky grade index (RGI) and coverage area index to develop a feasible estimation framework of cyanobacterial blooms. First, the close relationships between CCD reflectance spectral indices and water quality parameters were constructed based on water optical classification. Then, a regional algorithm for the RGI classification was established by density peaks. Finally, our proposed algorithm was applied to investigate dynamics of cyanobacterial blooms in the two lakes from 6-year series of CCD images. Encouraging results demonstrated that satellite remote sensing in conjunction with field observation can aid in the estimation of cyanobacterial blooms in the TGR.


Assuntos
Cianobactérias , Monitoramento Ambiental , Eutrofização , China , Lagos/microbiologia , Qualidade da Água
9.
Ying Yong Sheng Tai Xue Bao ; 23(12): 3250-6, 2012 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-23479863

RESUMO

This study analyzed the sensitivities of three vegetation biochemical parameters [chlorophyll content (Cab), leaf water content (Cw), and leaf area index (LAI)] to the changes of canopy reflectance, with the effects of each parameter on the wavelength regions of canopy reflectance considered, and selected three vegetation indices as the optimization comparison targets of cost function. Then, the Cab, Cw, and LAI were estimated, based on the particle swarm optimization algorithm and PROSPECT + SAIL model. The results showed that retrieval efficiency with vegetation indices as the optimization comparison targets of cost function was better than that with all spectral reflectance. The correlation coefficients (R2) between the measured and estimated values of Cab, Cw, and LAI were 90.8%, 95.7%, and 99.7%, and the root mean square errors of Cab, Cw, and LAI were 4.73 microg x cm(-2), 0.001 g x cm(-2), and 0.08, respectively. It was suggested that to adopt vegetation indices as the optimization comparison targets of cost function could effectively improve the efficiency and precision of the retrieval of biochemical parameters based on PROSPECT + SAIL model.


Assuntos
Ecossistema , Desenvolvimento Vegetal , Folhas de Planta/química , Tecnologia de Sensoriamento Remoto , Algoritmos , China , Clorofila/análise , Simulação por Computador , Modelos Teóricos , Fotossíntese/fisiologia , Chuva , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...