Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(50): 20092-20104, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051256

RESUMO

Tomato cultivars with contrasting resistance to pathogens regulate root exudates differentially in response to Ralstonia solanacearum attacks. However, strategies using innate root exudates against infection remain unknown. This study analyzed the innate root exudates of two tomato cultivars and their functions in regulating R. solanacearum infection. The innate root exudates differed between the two cultivars. Astaxanthin released from resistant plants inhibited colonization by R. solanacearum but promoted motility, while neferine released from susceptible plants suppressed motility and colonization. The secretion of astaxanthin in resistant tomatoes promoted the growth of biocontrol fungi in soil and reduced the abundance of pathogenic fungi. Neferine secreted by the susceptible cultivar inhibited the relative abundance of the bacterial-biocontrol-related Bacillus genus, indirectly reducing the soil's immune capacity. This study revealed contrasting strategies using root exudates in resistant and susceptible tomato cultivars to cope with R. solanacearum infection, providing a basis for breeding disease-resistant cultivars.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Capacidades de Enfrentamento , Melhoramento Vegetal , Solo , Doenças das Plantas/microbiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-23859781

RESUMO

Roxarsone is an organoarsenic feed additive that can be metabolised to other higher toxic arsenic (As) species in animal manure such as arsenate, arsenite, monomethylarsonic acid, dimethylarsinic acid, 3-amino-4-hydroxyphenylarsonic acid and other unknown As species. The accumulation, transport and distribution of As species in turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) amended with roxarsone and its metabolites in chicken manure were investigated. Results showed arsenite was the predominant As form, followed by arsenate in turnip and lettuce plants, and a low content of dimethylarsinic acid was detected only in lettuce roots. Compared with the control plants treated with chicken manure without roxarsone and its metabolites, the treatments containing roxarsone and its metabolites increased arsenite content by 2.0-3.2% in turnip shoots, by 6.6-6.7% in lettuce shoots, by 11-44% in turnip tubers and by 18-20% in lettuce roots at two growth stages. The enhanced proportion of arsenate content in turnip shoots, turnip tubers and lettuce roots was 4.3-14%, 20-35% and 70%, respectively, while dimethylarsinic acid content in lettuce roots increased 2.4 times. Results showed that the occurrence of dimethylarsinic acid in lettuce roots might be converted from the inorganic As species and the uptake of both inorganic and organic As compounds in turnip and lettuce plants would be enhanced by roxarsone and its metabolites in chicken manure. The pathway of roxarsone metabolites introduced into the human body via roxarsone → animal → manure → soil → crop was indicated.


Assuntos
Arsenicais/metabolismo , Brassica rapa/metabolismo , Lactuca/metabolismo , Esterco , Resíduos de Praguicidas/metabolismo , Roxarsona/metabolismo , Verduras/metabolismo , Ração Animal , Animais , Arsenicais/análise , Disponibilidade Biológica , Brassica napus/química , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Brassica rapa/química , Brassica rapa/crescimento & desenvolvimento , Ácido Cacodílico/análise , Ácido Cacodílico/metabolismo , Galinhas , China , Coccidiostáticos/análise , Coccidiostáticos/metabolismo , Coccidiostáticos/farmacocinética , Fezes/química , Aditivos Alimentares/efeitos adversos , Aditivos Alimentares/análise , Aditivos Alimentares/metabolismo , Aditivos Alimentares/farmacocinética , Contaminação de Alimentos/prevenção & controle , Lactuca/química , Lactuca/crescimento & desenvolvimento , Resíduos de Praguicidas/efeitos adversos , Resíduos de Praguicidas/análise , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Tubérculos/química , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Roxarsona/efeitos adversos , Roxarsona/análise , Roxarsona/farmacocinética , Verduras/química , Verduras/crescimento & desenvolvimento
3.
Huan Jing Ke Xue ; 34(2): 732-9, 2013 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-23668148

RESUMO

Seventy chicken and seventy-six pig feeds were collected from the feed stores in Guangdong province, and the species and concentrations of As, Cu and Zn were determined. We also examined the stability of roxarsone (ROX), one of the most widely used organoarsenical additives, either in the additive or in the feed at room temperature. The results showed that, averagely, the chicken and pig feeds contained 3.6 and 6.5 mg.kg-1 (As), 18.2 and 119.4 mg.kg-1 (Cu),and 124.6 and 486.2 mg.kg-1 (Zn), respectively. The excessive dosages of As, Cu and As in animal feeds will lead to higher residue of As, Cu and Zn in animal manures. Based on the national limit criteria for feed or feed additive, it was supposed that organoarsenicals had been used, only few feed samples exceeded the As limit, however, the excessive Cu and Zn in pig feeds were much more common. Organoarsenicals were found in 25.4% of the total feed samples, and As(Ill) and As(V) were the two most commonly detected As impurities in feeds bearing organoarsenicals. The mean detectable ROX and arsenilic acid were 7.0 and 21.2 mg.kg-1, respectively. Organoarsenicals were detectable in 24. 3% of the chicken feed samples and 26. 3% of the pig feed samples. Moreover, ROX was commonly used in chicken feeds, while p-ASA in pig feeds. ROX and the inorganic As impurities, either in the commercial additive or in the feed, remained stable for at least 30 days at room temperature, indicating the higher As impurities in feeds probably originated from the As impurities in organoarsenical additives. This is a new As exposure pathway for the producer and user of organoarsenicals and feeds amending organoarsenicals.


Assuntos
Ração Animal/análise , Arsênio/análise , Cobre/análise , Zinco/análise , Animais , Galinhas , China , Roxarsona/análise , Suínos
4.
Huan Jing Ke Xue ; 31(11): 2723-6, 2010 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-21250457

RESUMO

Litchi is a famous tropical and subtropical fruit originated in South China. Guangdong is one of the most important litchi production areas in China. Two hundred and eight soil samples were collected in litchi orchards after harvesting the fruit, in which nine often-used pesticides including metalaxyl, mancozeb, carbendazim, deltamethrin, cypermethrin, cyhalothrin, dipterex, dimethoate and dichlorvos were detected. The results showed that the detectable rates of various pesticides were ranked cypermethrin (59.1%) > carbendazim (51.0%) > mancozeb (11.1%) > metalaxyl (6.7%) > cyhalothrin (3.4%). Dimethoate and dichlorvos were detectable in few soil samples, and deltamethrin and dipterex were undetectable in all samples. The percentages of soil samples where different pesticides could be detected in one sample followed the order: one pesticide detectable (40.4%) > two pesticides simultaneously detectable (31.3%) > pesticide undetectable (18.8%) > three pesticides simultaneously detectable (8.2%) > four pesticides simultaneously detectable (1.4%). The concentrations of mancozeb in detectable samples averaged 39.05 microg x kg(-1), and that of cypermethrin was 7.83 microg x kg(-1). The mean concentrations of the other five pesticides ranged from 0.19 microg x kg(-1) to 1.65 microg x kg(-1). Totally, the pesticide residue status in litchi orchards in Guangdong was venial.


Assuntos
Monitoramento Ambiental , Litchi/crescimento & desenvolvimento , Resíduos de Praguicidas/análise , Poluentes do Solo/análise , China
5.
J Hazard Mater ; 164(2-3): 904-10, 2009 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18929443

RESUMO

Organoarsenicals are widely used as growth promoters in animal feed, resulting in unabsorbed arsenic (As) left in animal manures. A pot experiment was conducted to investigate the growth and As uptake of amaranth (Amaranthus tricolor Linn, a crop with an axial root system) and water spinach (Ipomoea aquatica Forsk, a crop with a fibrous root system) grown in a paddy soil (PS) and a lateritic red soil (LRS) amended with 2% and 4% (w/w) As-bearing chicken manure and pig manure, respectively. Soils without any fertilizers were the controls. The biomass, As contents and total As uptake of the shoots, As transfer factors (TFs) from roots to shoots and the root/shoot (R/S) ratios of water spinach were significantly higher than those of amaranth (p<0.0015). The biomass, total As uptake and R/S ratios showed significant difference for soil types (p<0.0031). Manure amendments increased the biomass of both vegetables, reduced the As contents in amaranth but increased those in water spinach. The As contents were negatively correlated with the biomass in amaranth, but positive correlation was observed for water spinach. The total As uptake by amaranth was decreased in PS and insignificantly affected in LRS by manure application, but that by water spinach was significantly increased in both soils. We suggest that the higher As uptake by water spinach might be related to its root structure and R/S ratio. Heavy application of As-bearing animal manures should be avoided in water spinach.


Assuntos
Arsênio/metabolismo , Contaminação de Alimentos/análise , Esterco/análise , Poluentes do Solo/análise , Verduras/metabolismo , Amaranthus/metabolismo , Animais , Galinhas , Ipomoea/metabolismo , Suínos
6.
Huan Jing Ke Xue ; 29(9): 2592-8, 2008 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-19068649

RESUMO

Animal manures contain higher As, Cu and Zn since organoarsenicals, copper and zinc additives are widely used in modern intensive animal production. A pot experiment in water spinach was conducted to investigate As, Cu and Zn bioavailability in a paddy soil (PS) and a lateritic red soil (LRS) applied with 2% and 4% (mass fraction) chicken manure (CM) and pig manure (PM), respectively. Soils without any fertilizer were included as the checks (CK). The results show that nearly all treatments with manures significantly increase the biomass of the above-ground part of water spinach compared to the CK. The biomass in PS is significantly greater than that in LRS. The As concentrations and uptake rates of water spinach are significantly enhanced by manure application, showing the rule of higher rates > lower rates, PM > CM and in PS> in LRS. Except for the Cu concentrations in PS, manure application significantly increases the Cu, Zn concentrations and uptake rates as well. Soil total As in all treatments slightly reduce, available As and percents of available As over total As (PAs) considerably decrease after the harvest of water spinach, but total Cu, Zn and available Cu, Zn and percents of available Cu and Zn over total Cu and Zn (PCu and PZn) nearly in all manure-amended treatments increase. Soil total As increases by 0.3-3.0 mg x kg(-1), available As by 0.011-0.034 mg x kg(-1), the PAs by 0.033-0.178 percentage points in all treatments with manures, as compared to the CK. Soil total Cu, available Cu and the PCu increases by 3.1-30.4 mg x kg(-1), 5.2-19.4 mg x kg(-1) and 1.2-34.1 percentage points, respectively. Those of Zn increase by--10.6-79.6 mg x kg(-1), 4.0-65.9 mg x kg(-1) and 1.0-64.2 percentage points. We assume that the bioavailability of soil heavy metals be evaluated by the increment of available concentration and percent available concentration over total concentration, higher rate manure application improves the bioavailability of soil As, Cu and Zn than lower rate one and in LRS than in PS.


Assuntos
Fertilizantes , Ipomoea/crescimento & desenvolvimento , Esterco , Metais Pesados/análise , Poluentes do Solo/análise , Animais , Arsênio/análise , Galinhas , Cobre/análise , Suínos , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...