Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(24): 10817-10827, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832598

RESUMO

Direct photoreduction of FeIII is a widely recognized route for accelerating FeIII/FeII cycle in photo-Fenton chemistry. However, most of the wavelengths covering the full spectral range are insufficient to supply enough photon energy for the direct reduction process. Herein, the hitherto neglected mechanism of FeIII reduction that the FeIII indirect reduction pathway initiated by light energy-dependent reactivity variation and reactive excited state (ES) was explored. Evolution of excited-state FeIII species (*FeIII) resulting from metal-centered charge excitation (MCCE) of FeIII is experimentally verified using pulsed laser femtosecond transient absorption spectroscopy with UV-vis detection and theoretically verified by quantum chemical calculation. Intense photoinduced intravalence charge transition was observed at λ = 380 and 466 nm, revealing quartet 4MCCE and doublet 2MCCE and their exponential processes. Light energy-dependent variation of *FeIII reactivity was kinetically certified by fitting the apparent rate constant of the radical-chain sequence of photo-Fenton reactions. Covalency is found to compensate for the intravalence charge separation following photoexcitation of the metal center in the MCCE state of Fenton photosensitizer. The *FeIII is established as a model, demonstrating the intravalence hole delocalization in the ES can be leveraged for photo-Fenton reaction or other photocatalytic schemes based on electron transfer chemistry.


Assuntos
Ferro , Ferro/química , Oxirredução , Peróxido de Hidrogênio/química , Cinética
2.
BMC Oral Health ; 24(1): 461, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627719

RESUMO

BACKGROUND: It is uncertain if mean platelet volume and periodontitis are related. The objective of this study was to examine the association between levels of mean platelet volume and moderate/severe periodontitis in adult persons who inhabit the U.S. METHODS: We screened 6,809 people from the National Health and Nutrition Examination Survey (NHANES 2009-2012). Mean platelet volume was measured in the Mobile Examination Centers (MECs) using the Beckman Coulter analyzer. The category of periodontitis was defined by the CDC/AAP using clinical periodontal parameters. Multiple logistic regression models were employed to examine the distribution for covariate differences across the various independent groups. Four models were employed to examine the relationship between mean platelet volume level and periodontitis. Smoothed curve fitting was utilized to confirm the linearity of the relationships. To determine the impact of factors on the connection between MPV and periodontitis, subgroup analysis and interaction testing were utilized. RESULTS: Results from the multiple logistic regression analysis indicate a significant association between moderate/severe periodontitis and the mean platelet level, even after considering any potential confounding variables (OR = 1.090, 95% CI: 1.019-1.166, P-value = 0.01211). Additionally, those in the upper tertile of mean platelet volume levels had a 21.6% higher probability of developing periodontitis when compared with those in the least tertile of mean platelet levels (OR = 1.216, 95% CI:1.052-1.406, P-value = 0.00816). Moreover, it showed a positive correlation between mean platelet volume (MPV) and moderate/severe periodontitis. Subgroup analyses indicated a positive association between the level of mean platelet volume and moderate/severe periodontitis among individuals who were under 60 years of age, had low income, were obese, never smoked, were heavy drinkers, had hypertension, and had no cardiovascular disease (p < 0.05). However, none of the subgroups exhibited significant interactions (p for interaction > 0.05). CONCLUSION: A correlation has been found between mean platelet volume levels and periodontal disease in individuals residing in the United States.


Assuntos
Volume Plaquetário Médio , Periodontite , Adulto , Humanos , Estados Unidos , Estudos Transversais , Inquéritos Nutricionais , Plaquetas
3.
Environ Sci Technol ; 58(10): 4781-4791, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38410972

RESUMO

Metal-free carbon material-mediated nonradical oxidation processes (C-NOPs) have emerged as a research hotspot due to their excellent performance in selectively eliminating organic pollutants in aqueous environments. However, the selective oxidation mechanisms of C-NOPs remain obscure due to the diversity of organic pollutants and nonradical active species. Herein, quantitative structure-activity relationship (QSAR) models were employed to unveil the origins of C-NOP selectivity toward organic pollutants in different oxidant systems. QSAR analysis based on adsorption and oxidation descriptors revealed that C-NOP selectivity depends on the oxidation potentials of organic pollutants rather than on adsorption interactions. However, the dominance of electronic effects in selective oxidation decreases with increasing structural complexity of organic pollutants. Moreover, the oxidation threshold solely depends on the inherent electronic nature of organic pollutants and not on the reactivity of nonradical active species. Notably, the accuracy of substituent descriptors (Hammett constants) and theoretical descriptors (e.g., highest occupied molecular orbital energy, ionization potential, and single-electron oxidation potential) is significantly influenced by the complexity and molecular state of organic pollutants. Overall, the study findings reveal the origins of organic pollutant-oriented selective oxidation and provide insight into the application of descriptors in QSAR analysis.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Carbono , Relação Quantitativa Estrutura-Atividade , Oxirredução , Oxidantes/química , Poluentes Químicos da Água/química
4.
Environ Sci Technol ; 57(33): 12534-12545, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37555746

RESUMO

The continuous electron supply for oxidant decomposition-induced reactive oxygen species (ROS) generation is the main contributor for the long-standing micropollutant oxidation in the iron-based advanced oxidation processes (AOPs). Herein, as a new class of co-catalysts, metal borides with dual active sites and preeminent conductive performance can effectively overcome the inherent drawback of Fenton-like reactions by steadily donating electrons to inactive Fe(III). Among the metal borides, tungsten boride (WB) exhibits a significant co-catalytic performance run ahead of common heterogeneous co-catalysts and exceptionally high stability. Based on qualitative and semi-quantitative tests, the hydroxyl radical, sulfate radical, and iron(IV)-oxo complex are all produced in the WB/Fe(III)/PDS system and Fe(IV)-induced methyl phenyl sulfoxide decomposition is up to 72%. Moreover, the production efficiency of ROS and relative proportions of radical and nonradical pathways change with various experimental conditions (dosages of PDS, WB, and solution pH) and water matrices. The rate-determining step of Fe(II) regeneration is greatly accelerated resulting from the synergetic effect between exposed metallic reactive sites and nonmetallic boron with reductive properties of WB. In addition, the self-dissolution of surface tungsten oxide and boron oxide leads to a renovated surface for sustainable Fe(III) reduction in long-term operations. Our discovery provides an efficient and sustainable strategy in the field of enhanced AOPs for water remediation.


Assuntos
Boro , Compostos Férricos , Compostos Férricos/química , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/química , Ferro/química , Metais , Oxirredução , Água
5.
J Hazard Mater ; 458: 132040, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451102

RESUMO

The acceleration of Fe(III)/Fe(II) conversion in Fenton systems is the critical route to achieve the long-lasting generation of reactive oxygen species towards the oxidation of refractory contaminants. Here, we found that waste leather derived porous carbon materials (LPC), as a simple and readily available metal-free biochar material, can promote the Fe(III)/H2O2 system to generate hydroxyl radicals (•OH) for oxidizing a broad spectrum of contaminants. Results of characterizations, theoretical calculations, and electrochemical tests show that the surface carbonyl groups of LPC can provide electron for direct Fe(III) reduction. More importantly, the graphitic-N on surface of LPC can enhance the reactivity of Fe(III) for accelerating H2O2 induced Fe(III) reduction. The presence of LPC accelerates the Fe(III)/Fe(II) redox cycle in the Fe(III)/H2O2 system, sustainable Fenton chain reactions is thus initiated for long-lasting generation of hydroxyl radicals without adding Fe(II). The continuous flow mode that couples in-situ Fenton-like oxidation and LPC with excellent adsorption catalytic properties, anti-coexisting substances interference and reusability performance enables efficient, green and sustainable degradation of trace organic pollutants. Therefore, the application of metal-free carbon materials in Fenton-like system can solve its rate-limiting problem, reduce the production of iron sludge, achieve green Fenton chemistry, and facilitate the actual engineering application of economic and ecological methods to efficiently remove trace organic contaminants from actual water sources.

6.
Environ Sci Technol ; 57(8): 3334-3344, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36734031

RESUMO

Accelerating the rate-limiting Fe3+/Fe2+ circulation in Fenton reactions through the addition of reducing agents (or co-catalysts) stands out as one of the most promising technologies for rapid water decontamination. However, conventional reducing agents such as hydroxylamine and metal sulfides are greatly restricted by three intractable challenges: (1) self-quenching effects, (2) heavy metal dissolution, and (3) irreversible capacity decline. To this end, we, for the first time, introduced redox-active polymers as electron shuttles to expedite the Fe3+/Fe2+ cycle and promote H2O2 activation. The reduction of Fe3+ mainly took place at active N-H or O-H bonds through a proton-coupled electron transfer process. As electron carriers, H atoms at the solid phase could effectively inhibit radical quenching, avoid metal dissolution, and maintain long-term reducing capacity via facile regeneration. Experimental and density functional theory (DFT) calculation results indicated that the activity of different polymers shows a volcano curve trend as a function of the energy barrier, highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, and vertical ionization potential. Thanks to the appropriate redox ability, polyaniline outperforms other redox-active polymers (e.g., poypyrrole, hydroquinone resin, poly(2,6-diaminopyridine), and hexaazatrinaphthalene framework) with a highest iron reduction capacity up to 5.5 mmol/g, which corresponds to the state transformation from leucoemeraldine to emeraldine. Moreover, the proposed system exhibited high pollutant removal efficiency in a flow-through reactor for 8000 bed volumes without an obvious decline in performance. Overall, this work established a green and sustainable oxidation system, which offers great potential for practical organic wastewater remediation.


Assuntos
Peróxido de Hidrogênio , Ferro , Ferro/química , Peróxido de Hidrogênio/química , Substâncias Redutoras , Elétrons , Oxirredução
7.
J Hazard Mater ; 443(Pt B): 130386, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444072

RESUMO

The regeneration of Fe(II) is the rate-limiting step in the Fenton/Fenton-like chain reactions that seriously hinder their scientific progress towards practical application. In this study, we proposed iron boride (FeB) for the first time as a new material to sustainably decompose H2O2 to generate hydroxyl radicals, which can non-selectively degrade a wide array of refractory organic pollutants. Fe(II) can be steadily released by the stepwise oxidation of FeB to stimulate Fenton reaction, meanwhile, B-B bonds as electron donors on the surface of FeB effectively promote the regeneration of Fe(II) from Fe(III) species and significantly accelerate the production of hydroxyl radicals. The low generation of toxic by-products and the high utilization rate of iron species validly avoid the secondary organic/metal pollution in the FeB/H2O2 system. Therefore, FeB mediated Fenton oxidation provides a novel strategy to realize a green and long-lasting environmental remediation.

8.
Water Res ; 218: 118412, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453031

RESUMO

Reduction of Fe(III) is the rate-limiting step of iron induced Fenton-like systems, such as the iron/peroxydisulfate system, reducing agents (RAs) were frequently employed as electron donors to directly reduce Fe(III) to further promote the formation of reactive oxygen species (ROS), mainly including hydroxyl radical (•OH), sulfate radical (SO4•-), and ferryl ion (Fe(IV)). However, the intrinsic distinctions among these ROS cause the substrate specific reactivity towards oxidation of diverse organic contaminants. In this study, various RAs (representative solid amorphous boron (A-Boron) and dissolved hydroxylamine (HA)) were added to enhance the Fe(III)/PDS system for investigating the substrate specific reactivity of ROS. It is demonstrated that RAs remarkably boost the Fe(III)/Fe(II) cycles to produce •OH, SO4•-, and Fe(IV) in the RAs/Fe(III)/PDS systems, based on the results of EPR analysis, quenching tests, and chemical probe analysis. Furthermore, the different yields of methyl phenyl sulfone (PMSO2) indicate that the distribution of multiple oxidizing species changed with various factors (i.e., type and dosage of RAs added, solution pH, Fe(III) and PDS dosage). This work provides the possibility for the adjustment of oxidation selectivity of RAs/Fe(III)/PDS systems by regulating contribution of radicals and non-radical for oxidizing organic contaminants due to the substrate specific reactivity of •OH, SO4•-, and Fe(IV), moreover, the comparison of homogeneous and heterogeneous RAs provides assistance in the application of RAs for environmental remediation.


Assuntos
Compostos Férricos , Substâncias Redutoras , Boro , Peróxido de Hidrogênio , Ferro , Oxirredução , Espécies Reativas de Oxigênio
9.
Water Res ; 210: 117984, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34959068

RESUMO

The sluggish kinetics of Fe(II) recovery strongly impedes the scientific progress of Fenton reaction (Fe(II)/H2O2) towards practical application. Here, we propose a novel mechanism that metal-free nitrogen-doped carbon nanotubes (NCNT) can enhance Fenton chemistry with H2O2 as electron donors by elevating the oxidation potential of Fe(III). NCNT remarkably promotes the circulation of Fe(III)/Fe(II) to produce hydroxyl radical (•OH) with excellent stability for multiple usages (more than 10 cycles) in the NCNT/Fe(III)/H2O2 system. Although carbonyl on NCNT can act as the electron supplier for Fe(III) reduction, the behavior of NCNT is distinct from common reductants such as hydroxylamine and boron. Electrochemical analysis and density functional theory calculation unveil that nitrogen sites of NCNT can weakly bind with Fe(III) to elevate the oxidation potential of Fe(III) (named near-free Fe(III), primarily FeOH2+) at pH ranging from 2.0 to 4.0. Without inputs of external stimulations or electron sacrificers, near-free Fe(III) can promote H2O2 induced reduction of Fe(III) to initiate Fenton chain reactions for long-lasting generation of •OH. To our delight, it is a common property of N-doped carbon materials (e.g., graphene, carbon nanofibers, and acetylene black), our research thus provides a novel, sustainable, and green strategy for promoting Fenton chemistry.


Assuntos
Ferro , Nanotubos de Carbono , Compostos Ferrosos , Peróxido de Hidrogênio , Nitrogênio
10.
Artigo em Inglês | MEDLINE | ID: mdl-34778532

RESUMO

Unlike the other studies on emotional design in multimedia learning, the present study differentiated the two confounding variables of visual interface design and structured content to manipulate the instructional material. Specifically, we investigated how the visual aesthetics of positive emotional interface design influenced learners' cognitive processes, emotional valences, learning outcomes, and subjective experience. Eighty-one college students took part in the experimental study. They were divided into the three experimental groups: a holistic layout of positive emotional design group (HPED), a local layout of positive emotional design group (LPED), and a neutral emotional design group (ND). By using a mixed approach of questionnaires and eye tracking, we further explored the differences among the three groups in cognitive processing, learning outcomes, and subjective experience. Results indicated that the LPED group invested higher cognitive effort, put more attentional focus in the relevant knowledge content module, and achieved better learning performance (i.e., retention and transfer tests) in contrast to the HPED group and the ND group. However, no significant difference in dynamic changes of emotional state among the three groups was detected. The analytical results can provide researchers and practitioners with valuable insights into the positive emotional design of multimedia learning, which allows for the facilitation of mental engagement, learning outcomes and subjective perception.

11.
Environ Sci Technol ; 55(13): 9189-9198, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34048222

RESUMO

Many reagents as electron sacrificers have been recently investigated to induce decomposition of permanganate (KMnO4) to produce highly reactive intermediate Mn species toward oxidation of organic contaminants; however, this strategy meanwhile causes low KMnO4 utilization efficiency. This study surprisingly found that graphite can mediate direct electron transfer from organics (e.g., sulfamethoxazole (SMX)) to KMnO4, resulting in high KMnO4 utilization efficiency, rather than reductive sites of graphite-induced conversion of KMnO4 to highly reactive intermediate Mn species. The galvanic oxidation process (GOP) and comparative experiments of different organic contaminants prove that the KMnO4/graphite system mainly extracts electrons from organic contaminants via a one-electron pathway instead of a two-electron pathway. More importantly, the KMnO4/graphite system has superior reusability, graphite can keep a long-lasting reactivity, and the KMnO4 utilization efficiency elevates significantly after each cycle of graphite. The transformation of SMX in the KMnO4/graphite system mainly includes self-coupling, hydroxylation, oxidation, and hydrolytic reaction. The work will improve insights into the electron-transfer mechanism and unveil the advantages of efficient KMnO4 utilization in the KMnO4-based technologies in environmental remediation.


Assuntos
Grafite , Poluentes Químicos da Água , Elétrons , Compostos de Manganês , Oxirredução , Óxidos , Permanganato de Potássio , Sulfametoxazol , Poluentes Químicos da Água/análise
12.
J Hazard Mater ; 412: 125253, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548777

RESUMO

Single-atom catalysts (SACs) have attracted considerable attention from researchers because of their distinct structures and characteristics, especially in maximizing atomic utilization and elevating the intrinsic catalytic activity. More recently, SACs have been becoming a burgeoning area of the environmental field and are extensively applied to remove various refractory organic pollutants. This review summarizes the emerging synthetic and characterization strategies of SACs and analyzes their development tendency. Besides, the application of SACs in advanced oxidation processes (AOPs, e.g., catalysis of H2O2, activation of persulfates and photocatalysis) is discussed. The excellent removal of pollutants depends on the fast generation of reactive oxygen species (SO4•-, •OH, 1O2, and O2•-). The advantages of SACs in AOPs are summarized, and constructive opinions are put forward for the stability and activity of the catalyst. Finally, the opportunities and challenges faced by SACs and its future development direction in the AOPs catalytic field are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...